scholarly journals A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

Author(s):  
Ryan R. McShane ◽  
Katelyn P. Driscoll ◽  
Roy Sando
2009 ◽  
Vol 13 (7) ◽  
pp. 1061-1074 ◽  
Author(s):  
M. Minacapilli ◽  
C. Agnese ◽  
F. Blanda ◽  
C. Cammalleri ◽  
G. Ciraolo ◽  
...  

Abstract. Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB) and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), near-infrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage) and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment. Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK) campaign in 2005 have been used. The results of this investigation seem to prove a slightly better agreement between SWAP and TSEB for some fields of the study area. Further investigations are programmed in order to confirm these indications.


The R Journal ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 352 ◽  
Author(s):  
Guillermo,Federico Olmedo ◽  
Samuel Ortega-Farías ◽  
Daniel,de,la Fuente-Sáiz ◽  
David,Fonseca- Luego ◽  
Fernando Fuentes-Peñailillo

2009 ◽  
Vol 6 (1) ◽  
pp. 1-38 ◽  
Author(s):  
M. Minacapilli ◽  
C. Agnese ◽  
F. Blanda ◽  
C. Cammalleri ◽  
G. Ciraolo ◽  
...  

Abstract. Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using Surface Energy Balance and Agro-Hydrological models. Both modelling approaches require remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), near-infrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation. To this end two different schemes have been tested: the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately, and the widely used one-source SEBAL model, where soil and vegetation are considered as a sole source. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared with the results of the Agro-Hydrological model SWAP, applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. In this latter model, remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. In the comparison presented here, actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference. Considering that the study area is characterized by typical Mediterranean sparse vegetation, i.e. olive, citrus and vineyards, we focused the attention on the main conceptual differences between SEBAL and TSEB. Airborne hyperspectral data acquired during a NERC campaign in 2005 have been used. The results of the investigation evidenced that the remote sensing two-sources approach used in TSEB model describes turbulent and radiative surface fluxes in a more realistic way than the one-source approach.


2021 ◽  
Vol 13 (24) ◽  
pp. 13786
Author(s):  
Utkarsh Kumar ◽  
Rashmi ◽  
Chandranath Chatterjee ◽  
Narendra Singh Raghuwanshi

In the past decades, multispectral and multitemporal remote sensing has been popularly used for estimating actual evapotranspiration (ETc) across the globe. It has been proven to be a cost-effective tool for understanding agricultural practices in a region. Today, because of the availability of different onboard sensors on an increasing number of different satellites, land surface activity can be captured at fine spatial and time scales. In the present study, three multi-date satellite imageries were used for the evaluation of remote sensing-based estimation of actual evapotranspiration in paddy in the command area of the tropical Kangsabati river basin. A surface energy balance model, the Simplified-Surface Energy Balance Index (S-SEBI), was applied for all three dates of the Rabi season (2014–2015) for the estimation of actual evapotranspiration. The crop coefficient was calculated using the exhaustive survey data collected from the command area and adjusted to local conditions. The ETc estimated using the S-SEBI-based model was compared with the Food and Agriculture Organization Penman–Monteith (FAO-56 PM) method multiplied by the adjusted local crop coefficient and lysimeter data in the command area. The coefficient of determination (r2) was applied to examine the accuracy of the S-SEBI model with respect to lysimeter data and the FAO-56 PM-based ETc. The results showed that the S-SEBI model performed well with the lysimeter (r2 = 0.90) in comparison with FAO-56 PM, with an r2 of 0.65. In addition to this, the S-SEBI-based ET estimates correlated well with the FAO-56 PM, with r and RMSE values of 0.06 and 1.13 mm/day (initial stage), 0.85 and 0.48 mm/day (development stage), and 0.77 and 0.52 (maturity stage) for paddy, respectively. The S-SEBI-based ETc estimate varied with different stages of crop growth and successfully captured the spatial heterogeneity within the command area. In general, this study showed that the S-SEBI method has the potential to calculate spatial evapotranspiration and provide useful information for efficient water management. The results revealed the applicability and accuracy of remote sensing-based ET for managing water resources in a command area with scarce data.


Author(s):  
G. Boulet ◽  
E. Delogu ◽  
W. Chebbi ◽  
Z. Rafi ◽  
V. Le Dantec ◽  
...  

<p><strong>Abstract.</strong> Evapotranspiration is an important component of the water cycle. For the agronomic management and ecosystem health monitoring, it is also important to provide an estimate of evapotranspiration components, i.e. transpiration and soil evaporation. To do so, Thermal InfraRed data can be used with dual-source surface energy balance models, because they solve separate energy budgets for the soil and the vegetation. But those models rely on specific assumptions on raw levels of plant water stress to get both components (evaporation and transpiration) out of a single source of information, namely the surface temperature. Additional information from remote sensing data are thus required. This works evaluates the ability of the SPARSE dual-source energy balance model to compute not only total evapotranspiration, but also water stress and transpiration/evaporation components, using either the sole surface temperature as a remote sensing driver, or a combination of surface temperature and soil moisture level derived from microwave data. Flux data at an experimental plot in semi-arid Morocco is used to assess this potentiality and shows the increased robustness of both the total evapotranspiration and partitioning retrieval performances. This work is realized within the frame of the Phase A activities for the TRISHNA CNES/ISRO Thermal Infra-Red satellite mission.</p>


Sign in / Sign up

Export Citation Format

Share Document