scholarly journals An investigation of the elastic scattering of 17O projectiles by different target nuclei using the CDCC method

2021 ◽  
Vol 67 (5 Sep-Oct) ◽  
pp. 1-4
Author(s):  
Şule Karatepe

The Continuum Discretized Coupled Channels (CDCC) method is a convenient method that was developed in order to examine weakly bound nuclei. For this purpose, the elastic scattering data of 17 O projectile for 90 Zr, 124 Sn and 208 P b target nuclei were investigated at 340 MeV using the CDCC method. In calculations using this method, 17 O projectiles were taken to be .Optical potentials were selected as the interaction potentials. It was seen that the results obtained were compatible with the experimental data. The effects of excited channels in all three systems were also determined.

2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


2011 ◽  
Vol 20 (04) ◽  
pp. 953-957 ◽  
Author(s):  
P. HUU-TAI CHAU

An overview of calculations performed within the Continuum Discretized Coupled Channels (CDCC) approach for deuteron induced reactions is given. We briefly present an extension of the CDCC formalism which accounts for the target excitations allowing us to determine ( d , d ') cross sections off deformed nuclei. We compare some calculated inelastic cross sections with experimental data. Then it is shown that the CDCC formalism can also be a useful tool to determine ( d , p ) cross sections. This point is illustrated with 54 Cr ( d , p )55 Cr reactions.


2018 ◽  
Vol 194 ◽  
pp. 07002
Author(s):  
M.K. Gaidarov ◽  
V.K. Lukyanov ◽  
D.N. Kadrev ◽  
E.V. Zemlyanaya ◽  
A.N. Antonov ◽  
...  

A microscopic analysis of the optical potentials (OPs) and cross sections of elastic scattering of 8B on 12C, 58Ni, and 208Pb targets at energies 20 < E < 170 MeV and 12,14Be on 12C at 56 MeV/nucleon is carried out. The real part of the OP is calculated by a folding procedure and the imaginary part is obtained on the base of the high-energy approximation (HEA). The density distributions of 8B evaluated within the variational Monte Carlo (VMC) model and the three-cluster model (3CM) are used to construct the potentials. The 14Be densities obtained in the framework of the the generator coordinate method (GCM) are used to calculate the optical potentials, while for the same purpose both the VMC model and GCM densities of 12Be are used. In the hybrid model developed and explored in our previous works, the only free parameters are the depths of the real and imaginary parts of OP obtained by fitting the experimental data. The use of HEA to estimate the imaginary OP at energies just above the Coulomb barrier is discussed. In addition, cluster model, in which 8B consists of a p-halo and the 7Be core, is applied to calculate the breakup cross sections of 8B nucleus on 9Be, 12C, and 197Au targets, as well as momentum distributions of 7Be fragments. A good agreement of the theoretical results with the available experimental data is obtained. It is concluded that the reaction studies performed in this work may provide supplemental information on the internal spatial structure of the proton- and neutron-halo nuclei.


2014 ◽  
Vol 66 ◽  
pp. 03008 ◽  
Author(s):  
T. L. Belyaeva ◽  
P. Amador-Valenzuela ◽  
E. F. Aguilera ◽  
E. Martinez-Quiroz ◽  
J. J. Kolata

2008 ◽  
Vol 17 (10) ◽  
pp. 2326-2330 ◽  
Author(s):  
A. S. DENIKIN ◽  
V. I. ZAGREBAEV ◽  
P. DESCOUVEMONT

A generalized optical potential for elastic scattering induced by light weakly bound nuclei is calculated within the Feshbach projection operator method. The model explicitly takes into account the contribution of the projectile break-up continuum treated within a microscopic cluster model. The model is tested on deuteron and 6Lielastic scattering by different targets at intermediate energies. The optical potentials are then calculated for the 6 He(230 MeV) +12Creaction treating the projectile nuclei within two (α + 2n) and three (α + n + n) cluster models. The differences are analyzed.


2019 ◽  
Vol 7 ◽  
pp. 209
Author(s):  
P. Demetriou ◽  
A. Marcinkowski ◽  
P. E. Hodgson

We show that pre-equlibrium inelastic scattering reactions to the continuum contain substantial collective components in addition to the multistep direct and multistep compound reactions. These collective reactions are investigated for the vibrational nuclei 56Fe, 58Ni, 90Zr, 93Nb, 208Pb and 209Bi , and the strongly-deformed, rotational W nucleus. The collective cross-sections are calculated using the experimental data for low-lying collective excitations supplemented where necessary by the giant multipole resonances evaluated using the energy-weight ed sum rule. The MSC and MSD cross-sections are evaluated by the Feshbach-Kerman-Koonin theory using a consistent set of parameters determined by analyses of (p, xn) reactions, that have practically no collective components. The results are compared with high-resolution neutron inelastic scattering data and prove able to account for the absolute magnitude of the cross-sections and also their detailed structure.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 491
Author(s):  
S. Zahra ◽  
B. Shafaq

Using  proton–proton elastic scattering data  at  TeV and squared four-momentum transfer 0.36 < -t <  0.76 (GeV/c)2 for 13 σBeam distance  and  0.07 < -t <  0.46 (GeV/c)2 for 4.3 σBeam distance, form factor of proton is predicted. Simplest version of Chou–Yang model is employed to extract the form factor by fitting experimental data of differential cross section from TOTEM experiment (for 13σBeamand 4.3 σBeam distance) to a single Gaussian. Root mean square (rms) charge radius of proton is calculated using this form factor.  It is found to be equal to 0.91 fm and 0.90 fm respectively. Which is in good agreement with experimental data and theoretically predicted values.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
I. M. Dremin

Using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, it is shown how the shape and the darkness of the inelastic interaction region of colliding protons change with increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes. Possible evolution of this shape with the dark core at the LHC to the fully transparent one at higher energies is discussed that implies that the terminology of the black disk would be replaced by the black toroid. The approach to asymptotics is disputed. The ratio of the real to imaginary parts of the nonforward elastic scattering amplitude is briefly discussed. All the conclusions are only obtained in the framework of the indubitable unitarity condition using experimental data about the elastic scattering of protons in the diffraction cone without any reference to quantum chromodynamics (QCD) or phenomenological approaches.


2014 ◽  
Vol 26 ◽  
pp. 1460061
Author(s):  
E. J. GARZON ◽  
JUJUN XIE ◽  
E. OSET

Using an interaction extracted from the local hidden gauge Lagrangians and the coupled channels ρN (s-wave), πN (d-wave), πΔ (s-wave) and πΔ (d-wave), we look in the region of [Formula: see text] and we find two resonances dynamically generated which are naturally associated to the N*(1520)(3/2-) and N*(1700)(3/2-). The N*(1700)(3/2-) appears neatly as a pole in the complex plane. The free parameters of the theory are chosen to fit the πN (d-wave) data. The unitary coupled channel approach followed here, in connection with the experimental data, leads automatically to a pole in the 1700 MeV region and makes this second 3/2- resonance unavoidable.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1434
Author(s):  
Albert Feijoo ◽  
Daniel Gazda ◽  
Volodymyr Magas ◽  
Àngels Ramos

We present a chiral K¯N interaction model that has been developed and optimized in order to account for the experimental data of inelastic K¯N reaction channels that open at higher energies. In particular, we study the effect of the higher partial waves, which originate directly from the chiral Lagrangian, as they could supersede the role of high-spin resonances employed in earlier phenomenological models to describe meson-baryon cross sections in the 2 GeV region. We present a detailed derivation of the partial wave amplitudes that emerge from the chiral SU(3) meson-baryon Lagrangian up to the d-waves and next-to-leading order in the chiral expansion. We implement a nonperturbative unitarization in coupled channels and optimize the model parameters to a large pool of experimental data in the relevant energy range where these new contributions are expected to be important. The obtained results are encouraging. They indicate the ability of the chiral higher partial waves to extend the description of the scattering data to higher energies and to account for structures in the reaction cross-sections that cannot be accommodated by theoretical models limited to the s-waves.


Sign in / Sign up

Export Citation Format

Share Document