scholarly journals An introduction to the Kaluza-Klein formulation

2020 ◽  
Vol 17 (1 Jan-Jun) ◽  
pp. 27
Author(s):  
G. F. Torres del Castillo

We give an elementary introduction to the Kaluza-Klein formulation, in which the gravitational and the electromagnetic fields are represented in the geometry of a five-dimensional space. We show that, in the framework of general relativity, the interaction of a point particle, or of a charged spin-zero field, with a gravitational and an electromagnetic field can be obtained through the metric of a five-dimensional space. We also show that the symmetries of the metric of this five-dimensional space lead to constants of motion for the point particles, or to operators that commute with the Klein--Gordon operator. A common misunderstanding related to the unification of gravitation and electromagnetism given by the Kaluza--Klein formulation is discussed.

1995 ◽  
Vol 73 (9-10) ◽  
pp. 602-607 ◽  
Author(s):  
S. R. Vatsya

The path-integral method is used to derive a generalized Schrödinger-type equation from the Kaluza–Klein Lagrangian for a charged particle in an electromagnetic field. The compactness of the fifth dimension and the properties of the physical paths are used to decompose this equation into its infinite components, one of them being similar to the Klein–Gordon equation.


2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The presented "New Unification Theory" unifies Classical Electrodynamics with General Relativity and Quantum Physics


2020 ◽  
Vol 35 (36) ◽  
pp. 2030020
Author(s):  
Chris Vuille

In this paper I introduce tensor multinomials, an algebra that is dense in the space of nonlinear smooth differential operators, and use a subalgebra to create an extension of Einstein’s theory of general relativity. In a mathematical sense this extension falls between Einstein’s original theory of general relativity in four dimensions and the Kaluza–Klein theory in five dimensions. The theory has elements in common with both the original Kaluza–Klein and Brans–Dicke, but emphasizes a new and different underlying mathematical structure. Despite there being only four physical dimensions, the use of tensor multinomials naturally leads to expanded operators that can incorporate other fields. The equivalent Ricci tensor of this geometry is robust and yields vacuum general relativity and electromagnetism, as well as a Klein–Gordon-like quantum scalar field. The formalism permits a time-dependent cosmological function, which is the source for the scalar field. I develop and discuss several candidate Lagrangians. Trial solutions of the most natural field equations include a singularity-free dark energy dust cosmology.


1988 ◽  
Vol 66 (4) ◽  
pp. 289-291
Author(s):  
Bernard M. de Dormale

The singularity of the electromagnetic field created by a point particle has been investigated by Dirac in the special case where the trajectory is approached in the rest frame of the particle. His result, fundamental in the study of radiation reaction, is generalized here to the case of an arbitrary inertial frame.


2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The presented "New Unification Theory" unifies Classical Electrodynamics with General Relativity and Quantum Physics


2000 ◽  
Vol 15 (08) ◽  
pp. 1235-1243 ◽  
Author(s):  
CHRISTOPHER KOHLER

A modification of Kaluza–Klein theory is proposed in which, as a result of a symmetry breaking, five-dimensional space–time is partially parallelized implying the appearance of torsion fields. A naturally chosen action functional leads to the Einstein–Cartan–Maxwell theory where the electromagnetic field strength is represented by the fifth component of the torsion two-form. Incorporation of a scalar field reveals that four-dimensional space–time torsion is not induced by the scalar field.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter discusses the kinematics of point particles undergoing any type of motion. It introduces the concept of proper time—the geometric representation of the time measured by an accelerated clock. It also describes a world line, which represents the motion of a material point or point particle P, that is, an object whose spatial extent and internal structure can be ignored. The chapter then considers the interpretation of the curvilinear abscissa, which by definition measures the length of the world line L representing the motion of the point particle P. Next, the chapter discusses a mathematical result popularized by Paul Langevin in the 1920s, the so-called ‘Langevin twins’ which revealed a paradoxical result. Finally, the transformation of velocities and accelerations is discussed.


2015 ◽  
Vol 24 (10) ◽  
pp. 1550079 ◽  
Author(s):  
Jens Boos

Analogies between gravitation and electromagnetism have been known since the 1950s. Here, we examine a fairly general type D solution — the exact seven parameter solution of Plebański–Demiański (PD) — to demonstrate these analogies for a physically meaningful spacetime. The two quadratic curvature invariants B2 - E2 and E⋅B are evaluated analytically. In the asymptotically flat case, the leading terms of E and B can be interpreted as gravitoelectric mass and gravitoelectric current of the PD solution, respectively, if there are no gravitomagnetic monopoles present. Furthermore, the square of the Bel–Robinson tensor reads (B2 + E2)2 for the PD solution, reminiscent of the square of the energy density in electrodynamics. By analogy to the energy–momentum 3-form of the electromagnetic field, we provide an alternative way to derive the recently introduced Bel–Robinson 3-form, from which the Bel–Robinson tensor can be calculated. We also determine the Kummer tensor, a tensor cubic in curvature, for a general type D solution for the first time, and calculate the pieces of its irreducible decomposition. The calculations are carried out in two coordinate systems: In the original polynomial PD coordinates and in a modified Boyer–Lindquist-like version introduced by Griffiths and Podolský (GP) allowing for a more straightforward physical interpretation of the free parameters.


2002 ◽  
Vol 14 (04) ◽  
pp. 409-420 ◽  
Author(s):  
VIERI BENCI ◽  
DONATO FORTUNATO FORTUNATO

This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.


Sign in / Sign up

Export Citation Format

Share Document