scholarly journals Simulation of charged particles in Earth's magnetosphere: an approach to the Van Allen belts

2019 ◽  
Vol 65 (1) ◽  
pp. 64
Author(s):  
Jorge Enrique García-Farieta ◽  
A. Hurtado

Earth's magnetosphere, beyond protecting the ozone layer, is a natural phenomena which allows to study the interaction between charged particles from solar activity and electromagnetic fields. In this paper we studied trajectories of charged particles interacting with a constant dipole magnetic field as first approach of the Earth's magnetosphere using different initial conditions. As a result of this interaction there is a formation of well defined radiation regions by a confinement of charged particles around the lines of the magnetic field. These regions, called Van Allen radiation belts, are described by classical electrodynamics and appear naturally in the numerical modeling done in this work.

2009 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
F. Califano ◽  
M. Faganello ◽  
F. Pegoraro ◽  
F. Valentini

Abstract. The Earth's magnetosphere and solar wind environment is a laboratory of excellence for the study of the physics of collisionless magnetic reconnection. At low latitude magnetopause, magnetic reconnection develops as a secondary instability due to the stretching of magnetic field lines advected by large scale Kelvin-Helmholtz vortices. In particular, reconnection takes place in the sheared magnetic layer that forms between adjacent vortices during vortex pairing. The process generates magnetic islands with typical size of the order of the ion inertial length, much smaller than the MHD scale of the vortices and much larger than the electron inertial length. The process of reconnection and island formation sets up spontaneously, without any need for special boundary conditions or initial conditions, and independently of the initial in-plane magnetic field topology, whether homogeneous or sheared.


2011 ◽  
Vol 29 (9) ◽  
pp. 1549-1569 ◽  
Author(s):  
M. Volwerk ◽  
J. Berchem ◽  
Y. V. Bogdanova ◽  
O. D. Constantinescu ◽  
M. W. Dunlop ◽  
...  

Abstract. A study of the interaction of solar wind magnetic field rotations with the Earth's magnetosphere is performed. For this event there is, for the first time, a full coverage over the dayside magnetosphere with multiple (multi)spacecraft missions from dawn to dusk, combined with ground magnetometers, radar and an auroral camera, this gives a unique coverage of the response of the Earth's magnetosphere. After a long period of southward IMF Bz and high dynamic pressure of the solar wind, the Earth's magnetosphere is eroded and compressed and reacts quickly to the turning of the magnetic field. We use data from the solar wind monitors ACE and Wind and from magnetospheric missions Cluster, THEMIS, DoubleStar and Geotail to investigate the behaviour of the magnetic rotations as they move through the bow shock and magnetosheath. The response of the magnetosphere is investigated through ground magnetometers and auroral keograms. It is found that the solar wind magnetic field drapes over the magnetopause, while still co-moving with the plasma flow at the flanks. The magnetopause reacts quickly to IMF Bz changes, setting up field aligned currents, poleward moving aurorae and strong ionospheric convection. Timing of the structures between the solar wind, magnetosheath and the ground shows that the advection time of the structures, using the solar wind velocity, correlates well with the timing differences between the spacecraft. The reaction time of the magnetopause and the ionospheric current systems to changes in the magnetosheath Bz seem to be almost immediate, allowing for the advection of the structure measured by the spacecraft closest to the magnetopause.


2005 ◽  
Vol 23 (10) ◽  
pp. 3389-3398 ◽  
Author(s):  
D. C. Delcourt ◽  
K. Seki ◽  
N. Terada ◽  
Y. Miyoshi

Abstract. We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds) of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV) electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above) do not behave adiabatically and possibly experience meandering (Speiser-type) motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds) precipitation of energetic (several keVs) electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.


2015 ◽  
Vol 8 (9) ◽  
pp. 2967-2975 ◽  
Author(s):  
K. Konstantinidis ◽  
T. Sarris

Abstract. The integral invariant coordinate I and Roederer's L or L* are proxies for the second and third adiabatic invariants, respectively, that characterize charged particle motion in a magnetic field. Their usefulness lies in the fact that they are expressed in more instructive ways than their counterparts: I is equivalent to the path length of the particle motion between two mirror points, whereas L*, although dimensionless, is equivalent to the distance from the center of the Earth to the equatorial point of a given field line, in units of Earth radii, in the simplified case of a dipole magnetic field. However, care should be taken when calculating the above invariants, as the assumption of their conservation is not valid everywhere in the Earth's magnetosphere. This is not clearly stated in state-of-the-art models that are widely used for the calculation of these invariants. The purpose of this work is thus to investigate where in the near-Earth magnetosphere we can safely calculate I and L* with tools with widespread use in the field of space physics, for various magnetospheric conditions and particle initial conditions. More particularly, in this paper we compare the values of I and L* as calculated using LANL*, an artificial neural network developed at the Los Alamos National Laboratory, SPENVIS, a space environment online tool, IRBEM, a software library dedicated to radiation belt modeling, and ptr3D, a 3-D particle tracing code that was developed for this study. We then attempt to quantify the variations between the calculations of I and L* of those models. The deviation between the results given by the models depends on particle initial position, pitch angle and magnetospheric conditions. Using the ptr3D v2.0 particle tracer we map the areas in the Earth's magnetosphere where I and L* can be assumed to be conserved by monitoring the constancy of I for energetic protons propagating forwards and backwards in time. These areas are found to be centered on the noon area, and their size also depends on particle initial position, pitch angle and magnetospheric conditions.


2020 ◽  
Vol 2 (7(76)) ◽  
pp. 42-46
Author(s):  
I.K. Mirzoeva

The analysis of the x-ray background of the solar corona in the range of 2-25 Kev for three months of 2003 was carried out.the integrated energy spectrum was obtained according to the RHESSI project. Comparison with the data of the x-ray background of The earth's magnetosphere according to the XMM-Newton project in the soft range of x-rays allowed us to draw a conclusion about the common nature of the features of seasonal variations of the x-ray background of The earth's magnetosphere and the thermal x-ray background of the solar corona. The main reason for these changes is the splitting of massive photon pairs born from vacuum in the magnetic field of the solar corona and in the magnetic field of the Earth. According to the RHESSI, XMM-Newton, and Plank projects, theoretical and experimental evidence for the existence of massive photon pairs (ultralight scalar bosons) is provided.


Sign in / Sign up

Export Citation Format

Share Document