scholarly journals Electron dynamics during substorm dipolarization in Mercury's magnetosphere

2005 ◽  
Vol 23 (10) ◽  
pp. 3389-3398 ◽  
Author(s):  
D. C. Delcourt ◽  
K. Seki ◽  
N. Terada ◽  
Y. Miyoshi

Abstract. We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds) of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV) electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above) do not behave adiabatically and possibly experience meandering (Speiser-type) motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds) precipitation of energetic (several keVs) electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.

Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 122 ◽  
Author(s):  
Kouichi Hirotani

When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize as electron-positron pairs in the magnetosphere. Such pairs efficiently screen the electric field along the magnetic field lines, when the accretion rate is typically greater than 0.03–0.3% of the Eddington rate. However, when the accretion rate becomes smaller than this value, the number density of the created pairs becomes less than the rotationally induced Goldreich–Julian density. In such a charge-starved magnetosphere, an electric field arises along the magnetic field lines to accelerate charged leptons into ultra-relativistic energies, leading to an efficient TeV emission via an inverse-Compton (IC) process, spending a portion of the extracted hole’s rotational energy. In this review, we summarize the stationary lepton accelerator models in black hole magnetospheres. We apply the model to super-massive black holes and demonstrate that nearby low-luminosity active galactic nuclei are capable of emitting detectable gamma-rays between 0.1 and 30 TeV with the Cherenkov Telescope Array.


1998 ◽  
Vol 188 ◽  
pp. 121-124 ◽  
Author(s):  
Toru Tanimori

In spite of the recent progress of high energy gamma-ray astronomy, there still remains quite unclear and important problem about the origin of cosmic rays. Supernova remnants (SNRs) are the favoured site for cosmic rays up to 1016 eV, as they satisfy the requirements such as an energy input rate. But direct supporting evidence is sparse. Recently intense non-thermal X-ray emission from the rims of the Type Ia SNR SN1006 (G327.6+14.6) has been observed by ASCA (Koyama et al. 1995)and ROSAT (Willingale et al. 1996), which is considered, by attributing the emission to synchrotron radiation, to be strong evidence of shock acceleration of high energy electrons up to ~100 TeV. If so, TeV gamma rays would also be expected from inverse Compton scattering (IC) of low energy photons (mostly attributable to the 2.7 K cosmic background photons) by these electrons. By assuming the magnetic field strength (B) in the emission region of the SNR, several theorists (Pohl 1996; Mastichiadis 1996; Mastichiadis & de Jager 1996; Yoshida & Yanagita 1997) calculated the expected spectra of TeV gamma rays using the observed radio/X-ray spectra. Observation of TeV gamma rays would thus provide not only the further direct evidence of the existence of very high energy electrons but also the another important information such as the strength of the magnetic field and diffusion coefficient of the shock acceleration. With this motivation, SN1006 was observed by the CANGAROO imaging air Cerenkov telescope in 1996 March and June, also 1997 March and April.


2006 ◽  
Vol 24 (1) ◽  
pp. 339-354 ◽  
Author(s):  
M. Longmore ◽  
S. J. Schwartz ◽  
E. A. Lucek

Abstract. Orientations of the observed magnetic field in Earth's dayside magnetosheath are compared with the predicted field line-draping pattern from the Kobel and Flückiger static magnetic field model. A rotation of the overall magnetosheath draping pattern with respect to the model prediction is observed. For an earthward Parker spiral, the sense of the rotation is typically clockwise for northward IMF and anticlockwise for southward IMF. The rotation is consistent with an interpretation which considers the twisting of the magnetic field lines by the bulk plasma flow in the magnetosheath. Histogram distributions describing the differences between the observed and model magnetic field clock angles in the magnetosheath confirm the existence and sense of the rotation. A statistically significant mean value of the IMF rotation in the range 5°-30° is observed in all regions of the magnetosheath, for all IMF directions, although the associated standard deviation implies large uncertainty in the determination of an accurate value for the rotation. We discuss the role of field-flow coupling effects and dayside merging on field line draping in the magnetosheath in view of the evidence presented here and that which has previously been reported by Kaymaz et al. (1992).


2011 ◽  
Vol 29 (9) ◽  
pp. 1549-1569 ◽  
Author(s):  
M. Volwerk ◽  
J. Berchem ◽  
Y. V. Bogdanova ◽  
O. D. Constantinescu ◽  
M. W. Dunlop ◽  
...  

Abstract. A study of the interaction of solar wind magnetic field rotations with the Earth's magnetosphere is performed. For this event there is, for the first time, a full coverage over the dayside magnetosphere with multiple (multi)spacecraft missions from dawn to dusk, combined with ground magnetometers, radar and an auroral camera, this gives a unique coverage of the response of the Earth's magnetosphere. After a long period of southward IMF Bz and high dynamic pressure of the solar wind, the Earth's magnetosphere is eroded and compressed and reacts quickly to the turning of the magnetic field. We use data from the solar wind monitors ACE and Wind and from magnetospheric missions Cluster, THEMIS, DoubleStar and Geotail to investigate the behaviour of the magnetic rotations as they move through the bow shock and magnetosheath. The response of the magnetosphere is investigated through ground magnetometers and auroral keograms. It is found that the solar wind magnetic field drapes over the magnetopause, while still co-moving with the plasma flow at the flanks. The magnetopause reacts quickly to IMF Bz changes, setting up field aligned currents, poleward moving aurorae and strong ionospheric convection. Timing of the structures between the solar wind, magnetosheath and the ground shows that the advection time of the structures, using the solar wind velocity, correlates well with the timing differences between the spacecraft. The reaction time of the magnetopause and the ionospheric current systems to changes in the magnetosheath Bz seem to be almost immediate, allowing for the advection of the structure measured by the spacecraft closest to the magnetopause.


2020 ◽  
Vol 900 (1) ◽  
pp. 52
Author(s):  
Jiaying Xu ◽  
Xiaojun Xu ◽  
Jing Wang ◽  
Yudong Ye ◽  
Qing Chang ◽  
...  

2013 ◽  
Vol 8 (S300) ◽  
pp. 416-417
Author(s):  
G. Allen Gary ◽  
Qiang Hu ◽  
Jong Kwan Lee

AbstractThis article comments on the results of a new, rapid, and flexible manual method to map on-disk individual coronal loops of a two-dimensional EUV image into the three-dimensional coronal loops. The method by Gary, Hu, and Lee (2013) employs cubic Bézier splines to map coronal loops using only four free parameters per loop. A set of 2D splines for coronal loops is transformed to the best 3D pseudo-magnetic field lines for a particular coronal model. The results restrict the magnetic field models derived from extrapolations of magnetograms to those admissible and inadmissible via a fitness parameter. This method uses the minimization of the misalignment angles between the magnetic field model and the best set of 3D field lines that match a set of closed coronal loops. We comment on the implication of the fitness parameter in connection with the magnetic free energy and comment on extensions of our earlier work by considering the issues of employing open coronal loops or employing partial coronal loop.


2020 ◽  
Author(s):  
Tatphicha Promfu ◽  
Suwicha Wannawichian ◽  
Jonathan Nichols ◽  
John Clarke

<p>In this work, the locations of observed Ganymede’s magnetic footprint were compared with the locations predicted by the magnetic field model under different plasma conditions. The shifts of Ganymede's magnetic footprint locations from average footpath given by Grodent et al. (2008) were analyzed. The average path is created from about 1000 images taken by instruments onboarded Hubble Space Telescope (HST). The position shifts indicate the variation of magnetic field line mapping from Ganymede to Jupiter’s ionosphere. The two sets of data from HST were analyzed to obtain the locations of Ganymede’s magnetic footprint in 2007 and 2016. For both sets of data, at longitude ranging approximately from 170° to 180°, we found that the locations were significantly shifted in poleward direction between 0.5° to 2° from the average footpath. Different from data in May 2007, the Ganymede’s magnetic footprint locations in May 2016 at longitude about 160° could possibly locate in equatorward direction. At orbital distance of Ganymede about 15 R<sub>J</sub>, in Jupiter’s middle magnetosphere, there is strong influence of plasma, whose major source is Io’s volcanic eruptions. Thus, the variations of plasma resulting in the stretching of magnetic field lines affect the magnetic field mapping from Ganymede to ionosphere. Furthermore, based on the magnetodisc model, the hot plasma pressure anisotropy strongly influences the stretching of the field lines and the mapped locations of Ganymede’s footprint in ionosphere to be shifted in either poleward or equatorward directions. In this study, we detected both poleward and equatorward shifts in different observations, whose connection with the plasma environment in the middle magnetosphere awaits for further study.</p>


Sign in / Sign up

Export Citation Format

Share Document