Waiting to Know the Future: A SLEUTH Model Forecast of Urban Growth with Real Data

Author(s):  
Germana Manca ◽  
Keith C. Clarke
Heliyon ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. e06786
Author(s):  
Nana Li ◽  
Shiguang Miao ◽  
Yaoting Wang

2021 ◽  
Vol 10 (2) ◽  
pp. 101
Author(s):  
Francisco Maturana ◽  
Mauricio Morales ◽  
Fernando Peña-Cortés ◽  
Marco A. Peña ◽  
Carlos Vielma

Urbanization is spreading across the world and beyond metropolitan areas. Medium-sized cities have also undergone processes of accelerated urban expansion, especially in Latin America, thanks to scant regulation or a complete lack thereof. Thus, understanding urban growth in the past and simulating it in the future has become a tool to raise its visibility and challenge territorial planners. In this work, we use Markov chains, cellular automata, multi-criteria multi-objective evaluation, and the determination of land use/land cover (LULC) to model the urban growth of the city of Temuco, Chile, a paradigmatic case because it has experienced powerful growth, where real estate development pressures coexist with a high natural value and the presence of indigenous communities. The urban scenario is determined for the years 2033 and 2049 based on the spatial patterns between 1985 and 2017, where the model shows the trend of expansion toward the northeast and significant development in the western sector of the city, making them two potential centers of expansion and conflict in the future given the heavy pressure on lands that are indigenous property and have a high natural value, aspects that need to be incorporated into future territorial planning instruments.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 159
Author(s):  
Clemens de Olde ◽  
Stijn Oosterlynck

Contemporary evaluations of urban growth management (UGM) strategies often take the shape of quantitative measurements of land values and housing prices. In this paper, we argue that it is of key importance that these evaluations also analyse the policy formulation and implementation phases of growth management strategies. It is in these phases that the institutions and discourses are (trans)formed in which UGM strategies are embedded. This will enable us to better understand the conditions for growth management policies’ success or failure. We illustrate this point empirically with the case of demarcating urban areas in the region of Flanders, Belgium. Using the Policy Arrangement Approach, the institutional dynamics and discursive meanings in this growth instrument’s formulation and implementation phase are unravelled. More specifically, we explain how the Flemish strategic spatial planning vision of restraining sprawl was transformed into one of accommodating growth in the demarcation of the Antwerp Metropolitan Area, epitomised by two different meanings of the phrase “safeguarding the future.” In conclusion, we argue that, in Antwerp, the demarcation never solidified into a stable policy arrangement, rendering it largely ineffective. We end by formulating three recommendations to contribute to future attempts at managing urban growth in Flanders.


Water Policy ◽  
2009 ◽  
Vol 11 (6) ◽  
pp. 731-741 ◽  
Author(s):  
D. A. Hughes ◽  
S. J. L. Mallory

The future management of water resources must take into account the levels of beneficial use that apply to various water use sectors. Competition for water during periods of low natural availability (droughts) suggests that users may not have access to their full supply requirement all of the time. This is particularly true of regions such as South Africa where natural water availability is highly variable and possibly will be even more so in the future. Socioeconomic evaluations of water allocation strategies should therefore account for the impacts of periodic restrictions (or shortfalls) in supply across different water use sectors. This paper presents an approach to designing water allocation operating rules that can account for restrictions and their impacts on individual water users, as well as on the community as a whole. The approach is illustrated using hypothetical data, as real data are not generally available. The paper maintains that it is important for socioeconomic evaluation methods to account for the possible effects of supply restrictions as well as the relative benefits of the normal supply volume. If they do not, they will not provide the information required by water resource engineers to design and operate water allocation systems.


2021 ◽  
Author(s):  
Talayeh Rad

Architecture is known to be the physical language of community. What define cities are streets, blocks, and buildings, and their interaction defines the neighbourhoods. Cities are poised for unlimited growth (Lefebvre, 2003) and the challenge is to propose a vision for the future growth of already dense neighbourhoods. The research aims to study the evolution of contemporary urbanism, ideas, and theories in order to explore the structure of the existing neighbourhoods and understand the dynamic behind the street patterns and urban blocks. Case studies are investigating the quality and configuration of physical urban form through recent history. The ideas are compared and contrasted to challenge modern and post-modern urban theories in order to propose a new vision for future urban growth. The design project takes into account the importance of urban morphology and typology and their impacts on the identity, diversity and affordability of the neighbourhood.


2019 ◽  
Vol 8 (3) ◽  
pp. 120 ◽  
Author(s):  
Sara Shirowzhan ◽  
Samad Sepasgozar

Deriving 3D urban development patterns is necessary for urban planners to control the future directions of 3D urban growth considering the availability of infrastructure or being prepared for fundamental infrastructure. Urban metrics have been used so far for quantification of landscape and land-use change. However, these studies focus on the horizontal development of urban form. Therefore, questions remain about 3D growth patterns. Both 3D data and appropriate 3D metrics are fundamentally required for vertical development pattern extraction. Airborne light detection and ranging (Lidar) as an advanced remote-sensing technology provides 3D data required for such studies. Processing of airborne lidar to extract buildings’ heights above a footprint is a major task and current automatic algorithms fail to extract such information on vast urban areas especially in hilly sites. This research focuses on proposing new methods of extraction of ground points in hilly urban areas using autocorrelation-based algorithms. The ground points then would be used for digital elevation model generation and elimination of ground elevation from classified buildings points elevation. Technical novelties in our experimentation lie in choosing a different window direction and also contour lines for the slant area, and applying moving windows and iterating non-ground extraction. The results are validated through calculation of skewness and kurtosis values. The results show that changing the shape of windows and their direction to be narrow long squares parallel to the ground contour lines, respectively, improves the results of classification in slant areas. Four parameters, namely window size, window shape, window direction and cell size are empirically chosen in order to improve initial digital elevation model (DEM) creation, enhancement of the initial DEM, classification of non-ground points and final creation of a normalised digital surface model (NDSM). The results of these enhanced algorithms are robust for generating reliable DEMs and separation of ground and non-ground points in slant urban scenes as evidenced by the results of skewness and kurtosis. Offering the possibility of monitoring urban growth over time with higher accuracy and more reliable information, this work could contribute in drawing the future directions of 3D urban growth for a smarter urban growth in the Smart Cities paradigm.


Sign in / Sign up

Export Citation Format

Share Document