Optimization of the Cutting Parameters for Drilling Magnesium Alloy AZ 91

2014 ◽  
Vol 56 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Yunus Kayir
2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


2014 ◽  
Vol 996 ◽  
pp. 658-663 ◽  
Author(s):  
Jose Carlos Outeiro ◽  
António Castanhola Batista ◽  
Maria Jose Marques

The major challenge of the Mg alloys has been their unsatisfactory corrosion resistance, which can be enhanced by improving the surface integrity. Cryogenic machining, where liquid nitrogen was used during machining, has been reported to improve the surface integrity of machined components, including compressive residual stresses. This paper analyses the influence of several cutting parameters, tool geometry and cryogenic conditions on the surface and subsurface residual stresses distribution.


2016 ◽  
Vol 8 (1) ◽  
pp. 168781401662839 ◽  
Author(s):  
Kaining Shi ◽  
Dinghua Zhang ◽  
Junxue Ren ◽  
Changfeng Yao ◽  
Xinchun Huang

2011 ◽  
Vol 338 ◽  
pp. 709-713
Author(s):  
Zhen Hua Wang ◽  
Jun Tang Yuan

In this paper, 24full factorial design and homogeneous design were applied to the high-speed milling experiments for Mg-6Nd-4Gd-3Y magnesium alloy. According to the experimental results of cutting force, the effect of cutting parameters (cutting speed, feed per tooth, depth of cut, and width of cut) on cutting force was discussed, and the nonlinear polynomial regression models of cutting forces based on the cutting parameters were presented by the partial least-square regression.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 740 ◽  
Author(s):  
Fernando Berzosa ◽  
Beatriz de Agustina ◽  
Eva María Rubio ◽  
J. Paulo Davim

Magnesium alloys are increasingly used due to the reduction of weight and pollutants that can be obtained, especially in the aeronautical, aerospace, and automotive sectors. In maintenance and repair tasks, it is common to carry out re-drilling processes, which must comply with the established quality requirements and be performed following the required safety and environmental standards. Currently, there is still a lack of knowledge of the machining of these alloys, especially with regards to drilling operations. The present article studies the influence of different cutting parameters on the surface quality obtained by drilling during repair and/or maintaining operations. For this propose, an experimental design was established that allows for the optimization of resources, using the average roughness (Ra) as the response variable, and it was analyzed through the analysis of variance (ANOVA). The results were within the margins of variation of the factors considered: the combination of factor levels that keep the Ra within the established margin, those that allow for the minimization of roughness, and those that allow for the reduction of machining time. In this sense, these operations were carried out in the most efficient way.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1035
Author(s):  
Jacobo Fernández ◽  
Eva María Rubio ◽  
Diego Carou ◽  
Raquel María Lorente-Pedreille

This paper analyzes the efficiency and sustainability of facing operations that are required within maintenance operations in the aeronautical industry. Due to the elevated cost and environmental impact of such processes, reducing the operating time while repairing parts is required. In this work, an experimental study of intermittent facing carried out on a magnesium alloy rod was developed. The experiment resembles real repair and maintenance machining operations, where an intermittent facing represents a more realistic scenario and where the results obtained in continuous turning studies are not always applicable. The work was performed with different cooling and lubrication systems and various cutting conditions, also considering the size of the interruption to analyze their impact in the surface roughness. To this end, surface finished in different measuring zones was studied. The aims of the study are to get a better understanding of the intermittent facing process in magnesium alloys typically employed in aeronautical applications and find the most efficient cutting parameters to obtain an improved surface under the safest and most environmentally respectful conditions.


2013 ◽  
Vol 837 ◽  
pp. 33-38 ◽  
Author(s):  
Bogdan Chirita ◽  
Nicolae Catalin Tampu

Surface roughness represents an important characteristic in the appreciation of a part quality. A good surface quality can enhance corrosion resistance and fatigue behavior throughout product life cycle. Magnesium alloys have gained in the recent years a larger use due to an excellent ratio between mechanical strength and weight. Cooling conditions are particularly important when machining magnesium. The chips are flammable and highly reactive with water based fluids. Higher temperature favors also the formation [email protected] built-up edge and worsens surface quality. The present paper analyses the influence of cooling conditions and cutting parameters on surface roughness of the parts made of magnesium alloy. Using design of experiments technique, a series of experiments were organized and based on that a connection between surface quality and cutting conditions was established.


Sign in / Sign up

Export Citation Format

Share Document