Experimental study on transient flow fluctuation characteristics in a 3 × 3 rod bundle under rolling condition

Kerntechnik ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. 147-160
Author(s):  
C.-X. Yan ◽  
Y. Zhang ◽  
C.-Y. Liu
2017 ◽  
Vol 312 ◽  
pp. 99-105 ◽  
Author(s):  
Lokanath Mohanta ◽  
Fan-Bill Cheung ◽  
Stephen M. Bajorek ◽  
Kirk Tien ◽  
Chris L. Hoxie

1990 ◽  
Vol 112 (3) ◽  
pp. 284-290 ◽  
Author(s):  
D. D. Budny ◽  
F. J. Hatfield ◽  
D. C. Wiggert

The traditional approach to designing a piping system subject to internal dynamic pressure is to restrain the piping as much as possible, and the approximation made in the analysis is to assume no contribution of structural energy dissipation. To determine the validity of this concept and approximation, an experimental study of a piping system was performed to measure the influence of structural damping. A pipe system was designed with a loop that could be turned so that its natural frequency would match that of the contained liquid. It was discovered that a properly sized damper on the piping loop greatly accelerates the decay of the fluid pressure transient. The damper absorbs some energy from the piping, reducing the resulting rebound fluid pressure. When the loop is subjected to forced steady-state vibration, there is a fluid pressure response. The amplitude of that pressure can be reduced by installing an external damper: the stiffer the damper the more effective it is in reducing dynamic pressure.


1985 ◽  
Vol 69 (1) ◽  
pp. 82-93 ◽  
Author(s):  
David G. Morris ◽  
Charles B. Mullins ◽  
Graydon L. Yoder

Author(s):  
Chaoxing Yan ◽  
Changqi Yan ◽  
Licheng Sun ◽  
Yang Wang

Experimental study on resistance of air-water two-phase flow in a vertical 3 × 3 rod bundle was carried out under normal temperature and pressure. The rod diameter and pitch were 8 mm and 11 mm, respectively. The ranges of gas and liquid superficial velocity were 0.013∼3.763 m/s and 0.076∼1.792 m/s, respectively. The result indicated that the existing correlations for calculating frictional coefficient in the rod bundle and local resistance coefficient could not give favorable predictions on the single-phase experimental data. For the case of two-phase flow, eight correlations for calculating two-phase equivalent viscosity poorly predicted the frictional pressure drop, with the mean absolute errors around 60%. Meanwhile, the eight classical two-phase viscosity formulae were evaluated against the local pressure drop at spacer grid. It is shown that Dukler model predicted the experimental data well in the range of Rel<9000 while McAdams correlation was the best for Rel⩾9000. For all the experimental data, Dukler model provided the best prediction with MRE of 29.03%. Furthermore, approaches to calculate two-phase frictional pressure drop and local resistance were proposed by considering mass quality, two-phase Reynolds number and densities in homogenous flow model, resulting in a good agreement with the experimental data.


1991 ◽  
Vol 125 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Kemal Tuzla ◽  
Cetin Unal ◽  
John C. Chen

1969 ◽  
Vol 91 (4) ◽  
pp. 568-580 ◽  
Author(s):  
P. J. Hlavac ◽  
O. E. Dwyer ◽  
M. A. Helfant

An experimental study of heat transfer to mercury flowing in line through an unbaffled rod bundle was carried out. The “rods” were special electrical heaters whose claddings had different thicknesses and thermal conductivities. The experiments were carried out under a thermal boundary condition approaching that of uniform heat flux in all directions at the inner wall of the rod cladding. It was found that displacement of a rod from its symmetrical position can result in a large reduction in its average heat transfer coefficient. This reduction increases exponentially with the amount of displacement. For a given direction and amount of displacement, the reduction is little affected by variations in cladding thickness and conductivity but is affected considerably by flow rate. Not only does the displaced rod suffer a reduction in its own average heat transfer coefficient, but so do those toward which it is displaced. At the same time, the average coefficients of the rods from which it is displaced remain about the same. Thus the overall average coefficient of the group of affected rods goes down when a single rod is displaced.


Sign in / Sign up

Export Citation Format

Share Document