Compressive properties and energy absorption response of cBN added Al composite foams

Author(s):  
Bilge Yaman Islak ◽  
Eren Onuklu
2017 ◽  
Vol 690 ◽  
pp. 294-302 ◽  
Author(s):  
Kunming Yang ◽  
Xudong Yang ◽  
Enzuo Liu ◽  
Chunsheng Shi ◽  
Liying Ma ◽  
...  

2017 ◽  
Vol 19 (12) ◽  
pp. 1700431 ◽  
Author(s):  
Xudong Yang ◽  
Kunming Yang ◽  
Jiwei Wang ◽  
Chunsheng Shi ◽  
Chunnian He ◽  
...  

2015 ◽  
Vol 645 ◽  
pp. 1-7 ◽  
Author(s):  
Cheng Guo ◽  
Tianchun Zou ◽  
Chunsheng Shi ◽  
Xudong Yang ◽  
Naiqin Zhao ◽  
...  

2011 ◽  
Vol 121-126 ◽  
pp. 75-79
Author(s):  
Bo Young Hur ◽  
Rui Zhao

The compressive behaviors of AZ31-Zr foams using Ca particles as thickening agent and CaCO3 powder as foaming agent were investigated in this study. The porosity was about 48.7%~72.9%, pore size was between 0.43~0.97 mm, and homogenous pore structures were obtained. Mechanical properties of AZ31 Mg alloy foams were investigated by means of UTM. The cellular AZ31 Mg foams possess superior comprehensive mechanical properties. The energy absorption characteristics and the effects of compression behavior on the energy absorption properties for the cellular AZ31 Mg foams have been investigated and discussed. The results show that with the addition of Zr, the Mg alloy foam has the highest energy absorption value of 16.26 MJ/m3 and the hardness value of 81.8 HV, which is much higher than that of the foams fabricated without Zr.


2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3194 ◽  
Author(s):  
Zuqian Jiang ◽  
Liwen Zhang ◽  
Tao Geng ◽  
Yushan Lai ◽  
Weile Zheng ◽  
...  

Coir fiber (CF), an eco-friendly and renewable natural fiber, was introduced into magnesium phosphate cement (MPC) mortar to improve its crack resistance. A total of 21 specimens were employed to investigate the failure pattern, compressive strength, stress–strain curve, and energy absorption of MPC with varying CF lengths (0, 5, 10, 15, 20, 25, and 30 mm) after a curing period of 28 days through a static compressive test. The results demonstrated that compressive strength, elastic modulus, and secant modulus decreased with the increase in CF length. However, energy absorption presented a convex curve, which increased to the maximum value (77.0% relative to the value of the specimen without CF) with a CF length of 20 mm and then declined. A series of modern micro-tests were then carried out to analyze the microstructure and composition of specimens to explain the properties microscopically.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 517 ◽  
Author(s):  
Rinoj Gautam ◽  
Sridhar Idapalapati

Cellular lattice structures have important applications in aerospace, automobile and defense industries due to their high specific strength, modulus and energy absorption. Additive manufacturing provides the design freedom to fabricate complex cellular structures. This study investigates the compressive properties and deformation behavior of a Ti-6Al-4V unit Kagome structure fabricated by selective laser melting. Further, the mechanical performance of multi-unit and multi-layer Kagome structure of acrylonitrile butadiene styrene (ABS) ABS-M30™ manufactured by fused deposition modeling is explored. The effect of a number of layers of Kagome structure on the compressive properties is investigated. This paper also explores the mechanical properties of functionally graded and uniform density Kagome structure. The stiffness of the structure decreased with the increase in the number of layers whereas no change in peak load was observed. The functionally graded Kagome structure provided 35% more energy absorption than the uniform density structure.


Sign in / Sign up

Export Citation Format

Share Document