Productive Polishing TEM Sample Preparation Methodology Development

Author(s):  
Huisheng Yu ◽  
Shuqing Duan ◽  
Ming Li ◽  
Qihua Zhang ◽  
Wei-Ting Kary Chien

Abstract In this paper, three productive polishing transmission electron microscopy (TEM) sample preparation methods are reported. The methods are studied to improve the efficiency and expand the application fields. Method 1 and 2 address expanding conventional polishing method application on same or similar pattern samples. Method 1 used a laser mark to identify one of the sample; and method 2 used a Pt coated glass inserted between samples or a direct deposition of Pt on one of the samples. Method 3 was developed facilitate stacking three or more samples into a single, batch process block and improved the efficiency greatly.

2005 ◽  
Vol 20 (7) ◽  
pp. 1619-1627 ◽  
Author(s):  
Ann N. Chiaramonti ◽  
Laurence D. Marks

A brief overview of transmission electron microscopy as it applies specifically to obtaining surface crystallographic information is presented. This review will encompass many of the practical aspects of obtaining surface crystal information from a transmission electron microscope, including equipment requirements, experimental techniques, sample preparation methods, data extraction and image processing, and complimentary techniques.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


1992 ◽  
Vol 281 ◽  
Author(s):  
S. Shih ◽  
K. H. Jung ◽  
D. L. Kwong

ABSTRACTWe have developed a new, minimal damage approach for examination of luminescent porous Si layers (PSLs) by transmission electron microscopy (TEM). In this approach, chemically etched PSLs are fabricated after conventional plan-view TEM sample preparation. A diffraction pattern consisting of a diffuse center spot, characteristic of amorphous material, is primarily observed. However, crystalline, microcrystalline, and amorphous regions could all be observed in selected areas. A crystalline mesh structure could be observed in some of the thin areas near the pinhole. The microcrystallite sizes were 15–150 Å and decreased in size when located further from the pinhole.


Sign in / Sign up

Export Citation Format

Share Document