Electrical Invasiveness of Grinding and Polishing Silicon Integrated Circuits Down to 1 μm Remaining Silicon Thickness

Author(s):  
Robert Chivas ◽  
Scott Silverman ◽  
Michael DiBattista ◽  
Ulrike Kindereit

Abstract Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. When the remaining silicon is reduced, some redistribution of stress is expected, possibly altering the performance (timing) of integrated circuits in addition to electron-hole pair generation. In this work, a study of the electrical invasiveness due to grinding and polishing silicon integrated circuits to ultra-thin (< 5 um global, ~ 1 um local) remaining thickness is presented.

Author(s):  
Robert Chivas ◽  
Scott Silverman ◽  
Michael DiBattista

Abstract Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. Ultra-thin RST enables VIS light techniques such as laser voltage probing. In this work we investigate the lower RST limit due to sub-surface damage from grinding and a one-step polishing method to achieve 3 um RST (+/- 0.8 um) over 121 mm2 die (11 x 11 mm) test package as well as 5 um (+/- ) over 109.2 mm2 (8.0 x 13.7mm) active device.


Author(s):  
M. J. Campin ◽  
P. Nowakowski ◽  
P. E. Fischione

Abstract The size of devices on state-of-the-art integrated circuits continues to decrease with each technology node, which drives the need to continually improve the resolution of electrical failure analysis techniques. Solid immersion lenses are commonly used in combination with infrared light to perform analysis from the backside of the device, but typically only have resolutions down to ~200 nm. Improving resolution beyond this requires the use of shorter wavelengths, which in turn requires a silicon thickness in the 2 to 5 µm range. Current ultra-thinning techniques allow consistent thinning to ~10 µm. Thinning beyond this, however, has proven challenging. In this work, we show how broad beam Ar ion milling can be used to locally thin a device’s backside silicon until the remaining silicon thickness is < 5 µm.


2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


MRS Bulletin ◽  
1995 ◽  
Vol 20 (11) ◽  
pp. 74-77
Author(s):  
Edward I. Cole ◽  
Richard E. Anderson

Open interconnections on integrated circuits (ICs) are a serious and ubiquitous problem throughout the micro-electronics industry. The efforts to understand the mechanisms responsible for producing open interconnections and to develop analytical methods to localize them demonstrate the concern manufacturers have for this problem. Multiple layers of metallization not only increase the probability that an open conductor or via will occur because of the increased number of interconnections and vias but also increase the difficulty in localizing the site of the failure because upper layers may mask the failure site.Rapid failure analysis of open-conductor defects is critical in new product development and reliability assessment of ICs where manufacturing and product development delays can cost millions of dollars a day. In this article, we briefly review some standard failure analysis approaches and then concentrate on new techniques to rapidly locate open-conductor defects that would have been difficult or impossible to identify using earlier methods. Each method is described in terms of the physics of signal generation, application, and advantages and disadvantages when compared to existing methods.


2002 ◽  
Vol 92 (3) ◽  
pp. 1248-1255 ◽  
Author(s):  
Giuseppe Bertuccio ◽  
Diego Maiocchi

1963 ◽  
Vol 131 (1) ◽  
pp. 134-136 ◽  
Author(s):  
G. Fabri ◽  
E. Gatti ◽  
V. Svelto

2011 ◽  
Vol 8 ◽  
pp. 483-486
Author(s):  
S. Punthawanunt ◽  
C. Teeka ◽  
R. Jomtarak ◽  
S. Mitatha ◽  
J. Ali ◽  
...  

2000 ◽  
Vol 47 (6) ◽  
pp. 2575-2579 ◽  
Author(s):  
P. Oldiges ◽  
R. Dennard ◽  
D. Heidel ◽  
B. Klaasen ◽  
F. Assaderaghi ◽  
...  

1983 ◽  
Vol 27 (8) ◽  
pp. 4779-4787 ◽  
Author(s):  
A. Elçi ◽  
M. O. Scully ◽  
J. M. O'Hare

Sign in / Sign up

Export Citation Format

Share Document