Ultra-Thinning of Silicon for Backside Fault Isolation

Author(s):  
M. J. Campin ◽  
P. Nowakowski ◽  
P. E. Fischione

Abstract The size of devices on state-of-the-art integrated circuits continues to decrease with each technology node, which drives the need to continually improve the resolution of electrical failure analysis techniques. Solid immersion lenses are commonly used in combination with infrared light to perform analysis from the backside of the device, but typically only have resolutions down to ~200 nm. Improving resolution beyond this requires the use of shorter wavelengths, which in turn requires a silicon thickness in the 2 to 5 µm range. Current ultra-thinning techniques allow consistent thinning to ~10 µm. Thinning beyond this, however, has proven challenging. In this work, we show how broad beam Ar ion milling can be used to locally thin a device’s backside silicon until the remaining silicon thickness is < 5 µm.

Author(s):  
Robert Chivas ◽  
Scott Silverman ◽  
Michael DiBattista ◽  
Ulrike Kindereit

Abstract Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. When the remaining silicon is reduced, some redistribution of stress is expected, possibly altering the performance (timing) of integrated circuits in addition to electron-hole pair generation. In this work, a study of the electrical invasiveness due to grinding and polishing silicon integrated circuits to ultra-thin (< 5 um global, ~ 1 um local) remaining thickness is presented.


Author(s):  
W. S. Teo ◽  
M.S. Wei ◽  
V. Narang ◽  
C. L. Gan ◽  
C. Richardson ◽  
...  

Abstract In this paper, we present methods for targeted silicon thinning by contour milling to overcome challenges associated with thinning large devices to under 5 µm remaining silicon thickness. Implementation of these techniques are expected to improve the yield of ultra-thin sample preparation and thermal stability of the device through electrical failure analysis for subsequent physical failure analysis. Using a computer numerical controlled milling system, the natural device bow is exploited to thin a specified area of interest by stage tilting before 2D milling. To target a larger area of interests, contour maps are rigged to thin an area preferentially while remaining compatible with existing workflows. Electrical testing have found improved thermal stability of the locally thinned samples over globally thinned samples.


Author(s):  
Robert Chivas ◽  
Scott Silverman ◽  
Michael DiBattista

Abstract Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. Ultra-thin RST enables VIS light techniques such as laser voltage probing. In this work we investigate the lower RST limit due to sub-surface damage from grinding and a one-step polishing method to achieve 3 um RST (+/- 0.8 um) over 121 mm2 die (11 x 11 mm) test package as well as 5 um (+/- ) over 109.2 mm2 (8.0 x 13.7mm) active device.


Author(s):  
P. Schwindenhammer ◽  
H. Murray ◽  
P. Descamps ◽  
P. Poirier

Abstract Decapsulation of complex semiconductor packages for failure analysis is enhanced by laser ablation. If lasers are potentially dangerous for Integrated Circuits (IC) surface they also generate a thermal elevation of the package during the ablation process. During measurement of this temperature it was observed another and unexpected electrical phenomenon in the IC induced by laser. It is demonstrated that this new phenomenon is not thermally induced and occurs under certain ablation conditions.


Author(s):  
Charles Zhang ◽  
Matt Thayer ◽  
Lowell Herlinger ◽  
Greg Dabney ◽  
Manuel Gonzalez

Abstract A number of backside analysis techniques rely on the successful use of optical beams in performing backside fault isolation. In this paper, the authors have investigated the influence of the 1340 nm and 1064 nm laser wavelength on advanced CMOS transistor performance.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (11) ◽  
pp. 74-77
Author(s):  
Edward I. Cole ◽  
Richard E. Anderson

Open interconnections on integrated circuits (ICs) are a serious and ubiquitous problem throughout the micro-electronics industry. The efforts to understand the mechanisms responsible for producing open interconnections and to develop analytical methods to localize them demonstrate the concern manufacturers have for this problem. Multiple layers of metallization not only increase the probability that an open conductor or via will occur because of the increased number of interconnections and vias but also increase the difficulty in localizing the site of the failure because upper layers may mask the failure site.Rapid failure analysis of open-conductor defects is critical in new product development and reliability assessment of ICs where manufacturing and product development delays can cost millions of dollars a day. In this article, we briefly review some standard failure analysis approaches and then concentrate on new techniques to rapidly locate open-conductor defects that would have been difficult or impossible to identify using earlier methods. Each method is described in terms of the physics of signal generation, application, and advantages and disadvantages when compared to existing methods.


Author(s):  
George Ontko

Abstract Bridging faults are a common failure mechanism in integrated circuits and scan-based diagnosis does a good job of isolating these defects. Diagnosis, however, can sometimes result in large search areas. Typically, these areas are caused by long repeater nets. When this happens, physical failure analysis will become difficult or impossible. This paper concerns itself with using a bridging fault analysis as a means of reducing these large search areas.


Sign in / Sign up

Export Citation Format

Share Document