Commercial Walk-Behind Lawn Mower Failure Analysis Case Study

Author(s):  
Dennis B. Brickman

Abstract A failure modes and effects testing program was conducted to analyze the cause of a mid-size commercial walk-behind lawn mower accident in which the operator’s foot came in contact with the rotating blade. Systematic analysis showed that the accident was caused by improper mower service and operator misuse of the mower. Testing results reveal that an alternative design proposal does not preclude this random event. Accident prevention countermeasures are explored.

Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


Author(s):  
Dennis B. Brickman ◽  
Ralph L. Barnett

Abstract A fatal accident occurred when a right angle gear box on an auger elevator disintegrated freeing the outboard end of a rotating PTO shaft. The tractor, acting as a stationary power source, flailed the PTO shaft which then struck and killed a farmer. No similar occurrences have been reported for the nearly 2000 similar units which have been used for over a decade. This paper studies a number of fundamental failure modes in order to determine which failure modes created the accident. Systematic analysis showed that the accident was caused by unusual misuse of the product. Known safety control concepts do not preclude this unforeseeable event.


2021 ◽  
pp. 531-556
Author(s):  
A. Hudgins ◽  
C. Roepke ◽  
B. James ◽  
B. Kondori ◽  
B. Whitley

Abstract This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6400
Author(s):  
Sara Antomarioni ◽  
Marjorie Maria Bellinello ◽  
Maurizio Bevilacqua ◽  
Filippo Emanuele Ciarapica ◽  
Renan Favarão da Silva ◽  
...  

Power plants are required to supply the electric demand efficiently, and appropriate failure analysis is necessary for ensuring their reliability. This paper proposes a framework to extend the failure analysis: indeed, the outcomes traditionally carried out through techniques such as the Failure Mode and Effects Analysis (FMEA) are elaborated through data-driven methods. In detail, the Association Rule Mining (ARM) is applied in order to define the relationships among failure modes and related characteristics that are likely to occur concurrently. The Social Network Analysis (SNA) is then used to represent and analyze these relationships. The main novelty of this work is represented by support in the maintenance management process based not only on the traditional failure analysis but also on a data-driven approach. Moreover, the visual representation of the results provides valuable support in terms of comprehension of the context to implement appropriate actions. The proposed approach is applied to the case study of a hydroelectric power plant, using real-life data.


Author(s):  
Charlie B. DeStefano ◽  
David C. Jensen

In a time when major technological advancements are happening at incredible rates and where demands for next-generation systems are constantly growing, advancements in failure analysis methods must constantly be developed, as well. Performance and safety are always top concerns for high-risk complex systems, and therefore, it is important for new failure analysis methods to be explored in order to obtain more useful and comprehensive failure information as early as possible, particularly during early design phases when detailed models might not yet exist. Therefore, this paper proposes a qualitative, function-based failure analysis method for early design phases that is capable of not only analyzing potential failure modes for physical components, but also for any manufacturing processes that might cause failures, as well. In this paper, the proposed method is first described in general and then applied in a case study of a proposed design for a nanochannel DNA sequencing device. Lastly, this paper discusses how more advanced and detailed analyses can be incorporated into this approach during later design phases, when more failure information becomes available.


Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
George M. Wenger ◽  
Richard J. Coyle ◽  
Patrick P. Solan ◽  
John K. Dorey ◽  
Courtney V. Dodd ◽  
...  

Abstract A common pad finish on area array (BGA or CSP) packages and printed wiring board (PWB) substrates is Ni/Au, using either electrolytic or electroless deposition processes. Although both Ni/Au processes provide flat, solderable surface finishes, there are an increasing number of applications of the electroless nickel/immersion gold (ENi/IAu) surface finish in response to requirements for increased density and electrical performance. This increasing usage continues despite mounting evidence that Ni/Au causes or contributes to catastrophic, brittle, interfacial solder joint fractures. These brittle, interfacial fractures occur early in service or can be generated under a variety of laboratory testing conditions including thermal cycling (premature failures), isothermal aging (high temperature storage), and mechanical testing. There are major initiatives by electronics industry consortia as well as research by individual companies to eliminate these fracture phenomena. Despite these efforts, interfacial fractures associated with Ni/Au surface finishes continue to be reported and specific failure mechanisms and root cause of these failures remains under investigation. Failure analysis techniques and methodologies are crucial to advancing the understanding of these phenomena. In this study, the scope of the fracture problem is illustrated using three failure analysis case studies of brittle interfacial fractures in area array solder interconnects. Two distinct failure modes are associated with Ni/Au surface finishes. In both modes, the fracture surfaces appear to be relatively flat with little evidence of plastic deformation. Detailed metallography, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and an understanding of the metallurgy of the soldering reaction are required to avoid misinterpreting the failure modes.


Author(s):  
Kuo Hsiung Chen ◽  
Wen Sheng Wu ◽  
Yu Hsiang Shu ◽  
Jian Chan Lin

Abstract IR-OBIRCH (Infrared Ray – Optical Beam Induced Resistance Change) is one of the main failure analysis techniques [1] [2] [3] [4]. It is a useful tool to do fault localization on leakage failure cases such as poor Via or contact connection, FEoL or BEoL pattern bridge, and etc. But the real failure sites associated with the above failure mechanisms are not always found at the OBIRCH spot locations. Sometimes the real failure site is far away from the OBIRCH spot and it will result in inconclusive PFA Analysis. Finding the real failure site is what matters the most for fault localization detection. In this paper, we will introduce one case using deep sub-micron process generation which suffers serious high Isb current at wafer donut region. In this case study a BEoL Via poor connection is found far away from the OBIRCH spots. This implies that layout tracing skill and relation investigation among OBIRCH spots are needed for successful failure analysis.


Author(s):  
Tsung-Te Li ◽  
Chao-Chi Wu ◽  
Jung-Hsiang Chuang ◽  
Jon C. Lee

Abstract This article describes the electrical and physical analysis of gate leakage in nanometer transistors using conducting atomic force microscopy (C-AFM), nano-probing, transmission electron microscopy (TEM), and chemical decoration on simulated overstressed devices. A failure analysis case study involving a soft single bit failure is detailed. Following the nano-probing analysis, TEM cross sectioning of this failing device was performed. A voltage bias was applied to exaggerate the gate leakage site. Following this deliberate voltage overstress, a solution of boiling 10%wt KOH was used to etch decorate the gate leakage site followed by SEM inspection. Different transistor leakage behaviors can be identified with nano-probing measurements and then compared with simulation data for increased confidence in the failure analysis result. Nano-probing can be used to apply voltage stress on a transistor or a leakage path to worsen the weak point and then observe the leakage site easier.


Sign in / Sign up

Export Citation Format

Share Document