Bottom Electrode Properties and Electrical Field Cycling Effects on HfOx based Resistive Switching Memory Device

Author(s):  
J. Li ◽  
Y. Kim ◽  
D. Kong ◽  
K. Cheng ◽  
S. -C. Seo ◽  
...  

Abstract The continuously growing demands in high-density memories drive the rapid development of advanced memory technologies. In this work, we investigate the HfOx-based resistive switching memory (ReRAM) stack structure at nanoscale by high resolution TEM (HRTEM) and energy dispersive X-ray spectroscopy (EDX) before and after the forming process. Two identical ReRAM devices under different electrical test conditions are investigated. For the ReRAM device tested under a regular voltage bias, material redistribution and better bottom electrode contact are observed. In contrast, for the ReRAM device tested under an opposite voltage bias, different microstructure change occurs. Finite element simulations are performed to study the temperature distributions of the ReRAM cell with filaments formed at various locations relative to the bottom electrode. The applied electric field as well as the thermal heat are the driving forces for the microstructure and chemical modifications of the bottom electrode in ReRAM deceives.

2017 ◽  
Vol 5 (37) ◽  
pp. 9799-9805 ◽  
Author(s):  
Guilin Chen ◽  
Peng Zhang ◽  
Lulu Pan ◽  
Lin Qi ◽  
Fucheng Yu ◽  
...  

A non-volatile resistive switching memory effect was observed in flexible memory device based on SrTiO3 nanosheets and polyvinylpyrrolidone composites.


MRS Advances ◽  
2018 ◽  
Vol 3 (33) ◽  
pp. 1943-1948 ◽  
Author(s):  
C. Strobel ◽  
T. Sandner ◽  
S. Strehle

AbstractMemristors represent an intriguing two-terminal device strategy potentially able to replace conventional memory devices as well as to support neuromorphic computing architectures. Here, we present the resistive switching behaviour of the sustainable and low-cost biopolymer chitosan, which can be extracted from natural chitin present for instance in crab exoskeletons. The biopolymer films were doped with Ag ions in varying concentrations and sandwiched between a bottom electrode such as fluorinated-tin-oxide and a silver top electrode. Silver-doped devices showed an overall promising resistive switching behaviour for doping concentrations between 0.5 to 1 wt% AgNO3. As bottom electrode fluorinated-tin-oxide, nickel, silver and titanium were studied and multiple write and erase cycles were recorded. However, the overall reproducibility and stability are still insufficient to support broader applicability.


2015 ◽  
Vol 54 (2) ◽  
pp. 021802 ◽  
Author(s):  
Lifeng Liu ◽  
Di Yu ◽  
Wenjia Ma ◽  
Bing Chen ◽  
Feifei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document