Failures of Brazed Joints

2021 ◽  
pp. 338-346
Author(s):  
Brett A. Miller ◽  
Daniel P. Dennies

Abstract The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.

1947 ◽  
Vol 20 (4) ◽  
pp. 998-1019 ◽  
Author(s):  
L. Mullins

Abstract The recent use of rubber components in extremes of climate and under a variety of service conditions has drawn attention to the importance of the knowledge of the physical properties of rubber vulcanizates at temperatures other than normal; the dearth of such knowledge has been emphasized by the enforced replacement of natural rubber by synthetic rubbers having reduced resistance to cold. When designing mechanical parts, the engineer must know first the conditions under which the part will be required to operate and, second, the physical properties under these conditions of the materials to be used. In a recent review Riesing has given illustrations of the importance of such knowledge; in particular he has shown that rubber mountings in an automobile may well be subjected to temperatures as high as 80 to 100° C, and although rubber mountings normally warm up during their operation, they may commence to function at extremely low temperatures, while there is a limiting temperature below which they fail even to warm up. The first part of this paper gives the results of the measurement of rebound resilience on a number of vulcanizates over a wide range of temperatures. Resilience is one of the important physical properties of a rubber vulcanizate, and in designing parts for shock or energy absorption, data on the resilience of the material are essential; for such applications a material with a low resilience is required, but as the energy absorbed manifests itself in the form of heat, the temperature rise of the absorber may control the permissible value of the resilience. In many other applications it is necessary that the material should have a high resilience and so absorb little energy. The resilience is normally determined by measuring the rebound of a ball or pendulum after impact on a sample of rubber; various other methods have been used, involving, either measurement of the decay in amplitude of the damped free vibration which results when a sample is deformed and then released, or measurement of the energy loss during sustained forced vibrations. Unhappily, the results from one test do not always show great similarity to the results from another test and, as a result, the engineer has to relay on empirical correlations with resilience tests conducted in a particular way, or on service behavior. The second part of this paper gives the lines along which an investigation is being conducted to illuminate the significance of these dissimilarities. The measurement of resilience over a range of temperatures has an added importance, since it throws some light on the structure of the rubber and on the processes taking place during deformation. Recent papers which have just become available in this country show that there has been interest and activity in this field in Germany during the war years.


2019 ◽  
pp. 40-46 ◽  
Author(s):  
V.V. Savchenko ◽  
A.V. Savchenko

We consider the task of automated quality control of sound recordings containing voice samples of individuals. It is shown that in this task the most acute is the small sample size. In order to overcome this problem, we propose the novel method of acoustic measurements based on relative stability of the pitch frequency within a voice sample of short duration. An example of its practical implementation using aninter-periodic accumulation of a speech signal is considered. An experimental study with specially developed software provides statistical estimates of the effectiveness of the proposed method in noisy environments. It is shown that this method rejects the audio recording as unsuitable for a voice biometric identification with a probability of 0,95 or more for a signal to noise ratio below 15 dB. The obtained results are intended for use in the development of new and modifying existing systems of collecting and automated quality control of biometric personal data. The article is intended for a wide range of specialists in the field of acoustic measurements and digital processing of speech signals, as well as for practitioners who organize the work of authorized organizations in preparing for registration samples of biometric personal data.


Alloy Digest ◽  
1982 ◽  
Vol 31 (8) ◽  

Abstract ANACONDA Alloy 268 is a copper-zinc alloy with excellent cold-working properties; it can be cold worked by all the conventional fabrication processes. Its corrosion resistance is excellent-to-good in most environments. This alloy has a wide range of applications including items such as springs, bathroom fixtures, automotive radiators, lamp sockets and sanitary traps. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-442. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1981 ◽  
Vol 30 (8) ◽  

Abstract CENTRI-CAST GRAY IRON 50 is a centrifugally cast gray iron with a nominal tensile strength of 50,000 psi. It is cast in the form of tubing which has a wide range of uses in applications where size and shape are of paramount importance and freedom from pattern cost is an important consideration. Among its many applications are farm machinery, seals, bushings, machine tools and general machinery uses. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-51. Producer or source: Federal Bronze Products Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (9) ◽  

Abstract CENTRI-CAST GRAY IRON 55 is a centrifugally cast gray iron with a nominal tensile strength of 55,000 psi. It is produced in the form of tubing which has a wide range of uses in applications where size and shape are of paramount importance and freedom from pattern cost is an important consideration. Typical applications are seals, bushings, farm machinery, casings and general machinery uses. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-48. Producer or source: Federal Bronze Products Inc..


Alloy Digest ◽  
1977 ◽  
Vol 26 (10) ◽  

Abstract CHASE 14310 is a high-conductivity copper with excellent resistance to thermal softening. It is a deoxidized, electronic grade of copper with excellent formability, weldability and plateability. It is available in strip form and has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-341. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
2003 ◽  
Vol 52 (1) ◽  

Abstract Wieland-B18 is a phosphor bronze with a composition that allows usage in slightly more severe service conditions than alloy B16 (UNS C52100). A common application is in slide bearings and slideways. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: CU-696. Producer or source: Wieland Metals Inc., Wieland-Werke AG.


Alloy Digest ◽  
1987 ◽  
Vol 36 (5) ◽  

Abstract SAE 1345 is a through-hardening, manganese alloy steel with intermediate hardenability. It is most commonly used where good strength is needed but low-to-medium toughness is sufficient. Its wide range of uses in tools and machinery includes hand tools, gears, shafts, bolts and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-425. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract SAE 8642 is a triple-alloy steel that can be hardened by austenitizing and quenching in oil. This steel has moderate hardenability with relative high strength and toughness, especially in the quenched-and-tempered condition. It is used in a wide range of components, parts and tools; examples are bolts, shafts, gears, wrenches, axles and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-382. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
2009 ◽  
Vol 58 (3) ◽  

Abstract Domex 550MC is a hot-rolled, high-strength low-alloy (HSLA) steel for cold forming operations. It is available in thicknesses of 2.00-12.80 mm. The alloy meets or exceeds the requirements of S550MC in EN 10149-2. Applications include a wide range of fabricated components and steel structures, including truck chassis, crane booms, and earthmoving machines. This datasheet provides information on composition, physical properties, tensile properties, and bend strength as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-594. Producer or source: SSAB Swedish Steel Inc.


Sign in / Sign up

Export Citation Format

Share Document