Comparison of Crash Test and Simulation Results for Impact of Silverado Pickup into New Jersey Barrier under Manual for assessing Safety Hardware

2012 ◽  
Vol 2309 (1) ◽  
pp. 114-126 ◽  
Author(s):  
Dhafer Marzougui ◽  
Cing-Dao (Steve) Kan ◽  
Kenneth S. Opiela

The National Crash Analysis Center (NCAC) at the George Washington University simulated the crash of a 2,270-kg Chevrolet Silverado pickup truck into a standard 32-in. New Jersey shape concrete barrier under the requirements of Test 3–11 of the Manual for Assessing Safety Hardware (MASH). The new, detailed finite element (FE) model for the Chevrolet Silverado was used as the surrogate for the MASH 2270P test vehicle. An FE model of the New Jersey barrier was drawn from the array of NCAC hardware models. The primary objective of this analysis was to simulate the crash test conducted to evaluate how this commonly used, NCHRP 350–approved device would perform under the more rigorous MASH crashworthiness criteria. A secondary objective was to use newly developed verification and validation (V&V) procedures to compare the results of the detailed simulation with the results of crash tests undertaken as part of another project. The crash simulation was successfully executed with the detailed Silverado FE model and NCAC models of the New Jersey concrete barrier. Traditional comparisons of the simulation results and the data derived from the crash test suggested that the modeling provided viable results. Further comparisons employing the V&V procedures provided a structured assessment across multiple factors reflected in the phenomena importance ranking table. Statistical measures of the accuracy of the test in comparison with simulation results provided a more robust validation than previous approaches. These comparisons further confirmed that the model was able to replicate impacts with a 2270P vehicle, as required by MASH.

Author(s):  
Pradeep Mohan ◽  
Dhafer Marzougui ◽  
Cing-Dao Kan ◽  
Kenneth Opiela

The National Crash Analysis Center (NCAC) at the George Washington University (GWU) has been developing and maintaining a public domain library of LS-DYNA finite element (FE) vehicle models for use in transportation safety research. The recent addition to the FE model library is the 2007 Chevrolet Silverado FE model. This FE model will be extensively used in roadside hardware safety research. The representation of the suspension components and its response in oblique impacts into roadside hardware are critical factors influencing the predictive capability of the FE model. To improve the FE model fidelity and applicability to the roadside hardware impact scenarios it is important to validate and verify the model to multitude of component and full scale tests. This paper provides detailed description of the various component and full scale tests that were performed, specifically, to validate the suspension model of the 2007 Chevrolet Silverado FE model.


Author(s):  
Lý Hùng Anh ◽  
Nguyễn Phụ Thượng Lưu ◽  
Nguyễn Thiên Phú ◽  
Trần Đình Nhật

The experimental method used in a frontal crash of cars costs much time and expense. Therefore, numerical simulation in crashworthiness is widely applied in the world. The completed car models contain a lot of parts which provided complicated structure, especially the rear of car models do not contribute to behavior of frontal crash which usually evaluates injuries of pedestrian or motorcyclist. In order to save time and resources, a simplification of the car models for research simulations is essential with the goal of reducing approximately 50% of car model elements and nodes. This study aims to construct the finite element models of front structures of vehicle based on the original finite element models. Those new car models must be maintained important values such as mass and center of gravity position. By using condition boundaries, inertia moment is kept unchanged on new model. The original car models, which are provided by the National Crash Analysis Center (NCAC), validated by using results from experimental crash tests. The modified (simplistic) vehicle FE models are validated by comparing simulation results with experimental data and simulation results of the original vehicle finite element models. LS-Dyna software provides convenient tools and very strong to modify finite element model. There are six car models reconstructed in this research, including 1 Pick-up, 2 SUV and 3 Sedan. Because car models were not the main object to evaluate in a crash, energy and behavior of frontal part have the most important role. As a result, six simplified car models gave reasonable outcomes and reduced significantly the number of nodes and elements. Therefore, the simulation time is also reduced a lot. Simplified car models can be applied to the upcoming frontal simulations.


Author(s):  
Anand Hammad ◽  
Anil Kalra ◽  
Prashant Khandelwal ◽  
Xin Jin ◽  
King H. Yang

Injuries to the upper extremities that are caused by dynamic impacts in crashes, including contact with internal instrument panels, has been a major concern, especially for smaller female occupants, and the problem worsens with increasing age due to reduced strength of the bones. From the analysis of 1988–2010 CDS unweighted data, it was found that risk of AIS ≥ 2 level for the arm was 58.2±20.6 percent higher in females than males, and the injury risk for a 75-year-old female occupant relative to a 21-year-old subjected to a similar physical insult was 4.2 times higher. Although injuries to upper extremities are typically not fatal, they can have long-term effects on overall quality of life. Therefore, it is important to minimize risks of injuries related to upper extremities, especially for elderly females, who are most at risk. Current anthropomorphic surrogates, like crash-test dummies, cannot be directly used to study injury limits, as these dummies were developed mainly to represent the younger population. The current study is focused on the development of a finite element (FE) model representing the upper extremity of an elderly female. This can be further used to analyze the injury mechanisms and tolerance limits for this vulnerable population. The FE mesh was developed through Computer Tomography (CT) scanned images of an elderly female cadaver, and the data included for validation of the developed model were taken from the experimental studies published in scientific literature, but only the data directly representing elderly females were used. It was found that the developed model could predict fractures in the long bones of elderly female specimens and could be further used for analyzing injury tolerances for this population. Further, it was determined that the developed segmental model could be integrated with the whole body FE model of the elderly female.


2014 ◽  
Vol 663 ◽  
pp. 547-551
Author(s):  
Solah Mohd Syazwan ◽  
Hamzah Azhar ◽  
Aqbal Hafeez Ariffin ◽  
Md Isa Mohd Hafzi ◽  
Rahman Mohd Khairudin ◽  
...  

ASEAN New Car Assessment Program (ASEAN NCAP) is a newly established automobile safety rating program in the Southeast Asia region, which the primary objective is to provide consumers with vehicle safety information and concurrently acknowledge manufacturers’ effort in elevating vehicle safety level. This information is comprehensively gathered through scientific and objective testing procedures in full scale crash test simulation. To ensure consistency and high repeatability, ASEAN NCAP operates standardized test and assessment protocols which utilize high-tech equipment and sensors, data acquisition system and also human surrogates (instrumented “dummies”). A point system is derived for marking purposes and a star rating scheme is designed to reflect the level of safety afforded to occupants. To cater for variation in crash configurations, occupants’ sizes and kinematics as well as other potential risks during crash impacts, a point deduction system (penalty-based) named as “modifiers” were introduced. Hence, this work attempts to describe the modifiers, their basis and justifications for inclusion in the safety rating scheme. A few case studies are demonstrated in this paper to enhance the understandings of modifiers concept.


Author(s):  
Nathan Schulz ◽  
Chiara Silvestri Dobrovolny ◽  
Stefan Hurlebaus ◽  
Harika Reddy Prodduturu ◽  
Dusty R. Arrington ◽  
...  

Abstract The manual for assessing safety hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the flail space model (FSM) in a full-scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Additionally, a finite element (FE) model was developed and calibrated against the full-scale crash test. The calibrated model can be used to perform parametric simulations with different testing conditions. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.


Author(s):  
Amirhossein Farvardin ◽  
Mahsan Bakhtiari Nejad ◽  
Michael Pozin ◽  
Mehran Armand

In this study, we aim to create and validate a Finite Element (FE) model to estimate the bone temperature after cement injection and compare the simulation temperature results with experimental data in three key locations of the proximal femur. Simulation results suggest that the maximum temperature-rise measured at the bone surface is 10°C which occurs about 12 minutes after the injection. Temperature profiles measured during the experiment showed an agreement with those of the simulation with an average error of 1.73 °C Although additional experiments are required to further validate the model, results of this pilot study suggest that this model is a promising tool for bone augmentation planning to lower the risk of thermal necrosis.


Author(s):  
Malcolm H. Ray

A method of comparing two acceleration time histories to determine whether they describe similar physical events is described. The method can be used to assess the repeatability of full-scale crash tests and it can also be used as a criterion for assessing how well a finite-element analysis of a collision event simulates a corresponding full-scale crash test. The method is used to compare a series of six identical crash tests and then is used to compare several finite-element analyses with full-scale crash test results.


Sign in / Sign up

Export Citation Format

Share Document