scholarly journals RESEARCH OF AXIAL FORCE AND THE TORQUE ACTION ON A DRILL STRING AT ROTARY AND COMBINED DRILLING METHODS

Author(s):  
Ya. S. Hrydzhuk

The estimation approach of the work performed by the main force factors acting on the drill string, rotary and combined drilling methods, was proposed. The problem of obtaining analytical functions of force factors action for a mechanical system with distributed parameters was formulated. To solve the problem, the axial load and torque functions of the drill string analysis was performed, depending on the alternating parameter - the well depth. By integrating these functions, analytical dependencies were established for determining the axial load and torque acting on the drill string in sections of directional and S-shaped wells. Relying on industrial data, numerical calculations of the size of work on sections of such wells were carried out. The obtained research results can be further used to find energy-saving modes of the drill string.

2020 ◽  
pp. 60-68
Author(s):  
V. A. Pyalchenkov ◽  
D. V. Pyalchenkov

Research has found that the axial load applied to the bit is distributed unevenly along the crowns of the balls. The middle crowns are the busiest. The value of the axial force perceived by a separate ring is associated with the deformation of the details of the ball joint. You can reduce the uneven loading of crowns by shifting them along the ball along the radius of the bit, placing them so that the vertical line passing through the center of the lower ball of the lock bearing passes through the middle of the gap between the crowns of neighboring balls. The bits with the new option of placing the teeth on the balls were tested on the stand and in industrial conditions. For the bits of this design, the axial load was distributed more evenly over the crowns, which allowed increasing the efficiency of their work.


2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


2021 ◽  
pp. 1-15
Author(s):  
Anirban Mazumdar ◽  
Stephen Buerger ◽  
Adam Foris ◽  
Jiann-cherng Su

Abstract Drilling systems that use downhole rotation must react torque either through the drill-string or near the motor to achieve effective drilling performance. Problems with drill-string loading such as buckling, friction, and twist become more severe as hole diameter decreases. Therefore, for small holes, reacting torque downhole without interfering with the application of weight-on-bit, is preferred. In this paper we present a novel mechanism that enables effective and controllable downhole weight on bit transmission and torque reaction. This scalable design achieves its unique performance through four key features: 1) mechanical advantage based on geometry, 2) direction dependent behavior using rolling and sliding contact, 3) modular scalability by combining modules in series, and 4) torque reaction and weight on bit that are proportional to applied axial force. As a result, simple mechanical devices can be used to react large torques while allowing controlled force to be transmitted to the drill bit. We outline our design, provide theoretical predictions of performance, and validate the results using full-scale testing. The experimental results include laboratory studies as well as limited field testing using a percussive hammer. These results demonstrate effective torque reaction, axial force transmission, favorable scaling with multiple modules, and predictable performance that is proportional to applied force.


Author(s):  
Amirshokh Kh. Abdurakhmonov

Introduction. Today thin-walled structures are widely used in the construction industry. The analysis of their rigidity, strength and stability is a relevant task which is of particular practical interest. The article addresses a method for the numerical analysis of stability of an axially-compressed i-beam rod subjected to the axial force and the bimoment. An axially compressed i-beam rod is the subject of the study. Materials and methods. Femap with NX Nastran were chosen as the analysis toolkit. Axially compressed cantilever steel rods having i-beam profiles and different flexibility values were analyzed under the action of the bimoment. The steel class is C245. Analytical data were applied within the framework of the Euler method and the standard method of analysis pursuant to Construction Regulations 16.13330 to determine the numerical analysis method. Results. The results of numerical calculations are presented in geometrically and physically nonlinear settings. The results of numerical calculations of thin-walled open-section rods, exposed to the axial force and the bimoment, are compared with the results of analytical calculations. Conclusions. Given the results of numerical calculations, obtained in geometrically and physically nonlinear settings, recommendations for the choice of a variable density FEM model are provided. The convergence of results is estimated for different diagrams describing the steel behavior. The bearing capacity of compressed cantilever rods, exposed to the bimoment, is estimated for the studied flexibility values beyond the elastic limit. A simplified diagram, describing the steel behaviour pursuant to Construction regulations 16.13330, governing the design of steel structures, is recommended to ensure the due regard for the elastoplastic behaviour of steel. The numerical analysis method, developed for axially-compressed rods, is to be applied to axially-compressed thin-walled open-section rods. National Research Moscow State University is planning to conduct a series of experiments to test the behaviour of axially-compressed i-beams exposed to the bimoment and the axial force. Cantilever i-beams 10B1 will be used in experimental testing.


2012 ◽  
Vol 217-219 ◽  
pp. 2740-2745 ◽  
Author(s):  
Shu Min Wan ◽  
Jing Huai Li ◽  
Xi Zhi Wu ◽  
Bin Lin

A new definition was proposed-bearing control; in the case the bearing subjects to both radial and axial force only, the deformation is roughly symmetry about the Y-axis. When axial preload is 0.4 times greater than radial force, the bearing is controllable. In the case the bearing is exposed to pure torque and axial load, and axial preload is 50 times of the torque, the bearing is controllable. When complex load is applied on the bearing and axial preload is more than 0.418Fr+0.46Fa, the bearing is controllable. The application of spring equivalent bearing to simplify the model; the analysis of the impact on bearing exerted by a variety of installation errors and determination of the best installation form; the relation between installation errors and bearing load, and the relation between axial preload and the best installation form under the condition that the bearing is controllable, all of those are mentioned.


1952 ◽  
Vol 19 (3) ◽  
pp. 327-330
Author(s):  
Aris Phillips

Abstract The problem of symmetrical pure bending with axial force of a curved bar in plasticity is considered. A method is given for finding the axial load and bending moment which produce a given strain distribution. This method is based upon approximating the stress-strain curves by means of broken lines. By increasing the number of sides of these broken lines it is possible to solve our problem with as high accuracy as is desired.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Mark C. Drakos ◽  
Howard Hillstrom ◽  
James E. Voos ◽  
Anna N. Miller ◽  
Andrew P. Kraszewski ◽  
...  

The shoe-surface interface has been implicated as a possible risk factor for anterior cruciate ligament (ACL) injuries. The purpose of this study is to develop a biomechanical, cadaveric model to evaluate the effect of various shoe-surface interfaces on ACL strain. There will be a significant difference in ACL strain between different shoe-surface combinations when a standardized rotational moment (a simulated cutting movement) is applied to an axially loaded lower extremity. The study design was a controlled laboratory study. Eight fresh-frozen cadaveric lower extremities were thawed and the femurs were potted with the knee in 30 deg of flexion. Each specimen was placed in a custom-made testing apparatus, which allowed axial loading and tibial rotation but prevented femoral rotation. For each specimen, a 500 N axial load and a 1.5 Nm internal rotation moment were placed for four different shoe-surface combinations: group I (AstroTurf-turf shoes), group II (modern playing turf-turf shoes), group III (modern playing turf-cleats), and group IV (natural grass-cleats). Maximum strain, initial axial force and moment, and maximum axial force and moment were calculated by a strain gauge and a six component force plate. The preliminary trials confirmed a linear relationship between strain and both the moment and the axial force for our testing configuration. In the experimental trials, the average maximum strain was 3.90, 3.19, 3.14, and 2.16 for groups I–IV, respectively. Group IV had significantly less maximum strain (p<0.05) than each of the other groups. This model can reproducibly create a detectable strain in the anteromedial bundle of the ACL in response to a given axial load and internal rotation moment. Within the elastic range of the stress-strain curve, the natural grass and cleat combination produced less strain in the ACL than the other combinations. The favorable biomechanical properties of the cleat-grass interface may result in fewer noncontact ACL injuries.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. Tahmaseb Towliat Kashani ◽  
Supun Jayasinghe ◽  
Seyed M. Hashemi

The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the MATLAB-based code, the resulting linear Eigenvalue problem is then solved to determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural frequencies, indicating beam stiffening. However, when a force and an end moment are acting in combination, the moment reduces the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment and axial compressive force.


2012 ◽  
Vol 06 (04) ◽  
pp. 1250022 ◽  
Author(s):  
SEKHAR CHANDRA DUTTA ◽  
RAJIB CHOWDHURY

Performance based seismic design requires precise assessments of inelastic seismic demand. Often, the studies to assess such demands are made without due cognizance to the impact of axial load caused by gravity. In this paper, the effect of gravity-induced axial force on load resisting members on such demand quantities is examined. To encompass the behavior of steel as well concrete structures with various types of degrading features, four different hysteresis models are used in the study. The results show that the effect of axial force on inelastic seismic demand become more significant for systems with short periods having degrading hysteresis behavior. Neglecting the effect of axial force may lead to an underestimation of yield capacity resulting in an overestimation of demand implying a safer design.


Sign in / Sign up

Export Citation Format

Share Document