scholarly journals Immune Checkpoint Myocarditis from Adjuvant Treatment of Melanoma

2020 ◽  
pp. 1-2
Author(s):  
Carrie Lenneman ◽  
John Dasher ◽  
Lavanya Kondapalli ◽  
Carrie Lenneman

Immune checkpoint inhibitors (ICIs) are effective therapy for many metastatic cancers and are now being used as adjuvant treatment for many stage III cancers to reduce the high risk of reoccurrence. ICIs activate a patient’s own T-cells to fight cancer, but in some cases, immune-related adverse events (irAEs) with inflammation of many organs can occur. Rare cases of myocarditis have been reported. More data is needed to improve our ability to monitor, diagnose and treat irAEs.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A570-A570
Author(s):  
Chen Zhao ◽  
Matthew Mule ◽  
Andrew Martins ◽  
Iago Pinal Fernandez ◽  
Renee Donahue ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) have changed the cancer treatment landscape, but immune-related adverse events (irAEs) can affect a wide range of tissues in patients receiving ICIs. Severe irAEs can be life-threatening or fatal and prohibit patients from receiving further ICI treatment. While the clinical features of irAEs are well documented, the pathological mechanisms and predictive biomarkers are largely unknown. In addition, there is a critical need to preserve ICI-induced anti-tumor immunity while controlling for irAEs, which requires deciphering molecular and cellular signatures associated specifically with irAEs beyond those more generally linked to anti-tumor immunity.MethodsTo unbiasedly identify immune cells and states associated with irAEs, we applied CITE-seq to measure transcripts and surface proteins (83 protein markers) from PBMCs collected from patients with thymic epithelial tumors before and after treatment with an anti-PD-L1 antibody (avelumab, NCT01772004, NCT03076554).ResultsSamples from 9 patients were analyzed. No patient had a history of pre-existing paraneoplastic autoimmune disease. Anti-tumor activity was observed in all cases, and 5 patients had clinical and/or biochemical evidence of immune-related muscle inflammation (myositis with or without myocarditis). Multilevel models applied within highly resolved cell clusters revealed transcriptional states associated with ICI response and more uniquely with irAEs. A total of 190,000 cells were included in the analysis after quality control. Most notably, CD45RA+ effector memory CD8 T cells with an mTOR transcriptional signature were highly enriched at baseline and post treatment in patients with irAEs.ConclusionsOur findings suggest the potential therapeutic avenues by using mTOR inhibitors to dampen autoimmune responses while potentially sparing anti-tumor activity, to prevent treatment discontinuation and improve clinical outcomes for cancer patients treated with ICIs.AcknowledgementsThis research was supported in part by the Intramural Research Program of the NCI (the Center for Cancer Research), NIAID and NIAMS, and through a Cooperative Research and Development Agreement between the National Cancer Institute and EMD Serono.Trial RegistrationNCT01772004, NCT03076554Ethics ApprovalThis study is approved by NCI institutional review board.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A683-A683
Author(s):  
Barbara Ma ◽  
Abhinav Jaiswal ◽  
K Sanjana Devi ◽  
Qingrong Huang ◽  
Joy Hsu ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) are limited by the high incidence of immune-related adverse events (irAEs) occurring in up to 40% of solid tumor patients on anti-PD-1 monotherapy 1 2 and 72% in anti-CTLA-4/anti-PD-1 combination.3 4 These toxicities can cause treatment cessation, hospitalization and even death.5–7 IrAEs are variable in severity, timing, onset, and remain poorly understood. Amongst the different toxicities, skin irAEs are most frequent, occur the earliest, and are correlated with a positive prognosis.4 8 However, there is a lack of preclinical models to study checkpoint toxicity. We evaluated a murine model of allergic contact dermatitis (contact hypersensitivity to 2,4-dinitrofluorobenzene) that is mediated by CD8+ T cells to gain a mechanistic understanding of skin checkpoint toxicity.MethodsC57BL/6 mice (n = 5 per group) were sensitized epicutaneously on shaved flank with hapten 0.5% DNFB on day -5 and elicited on their ears with DNFB on day 0. Starting four weeks later, mice were treated with either anti-programmed cell death protein (PD-1) or isotype. At the time of the first recall challenge only, mice were given either anti-PD-1 or isotype. Mice received subsequent rechallenges with DNFB to the ears and ear swelling was measured at various time points. Mice were depleted of circulating or skin CD8+ T cells by anti-CD8 mAbs from day 29 onwards, and maintained weekly, as in this model CD8+ T cells are the main hapten responder population. Samples were collected for histochemistry and analyzed by flow cytometry.ResultsOur data indicate that despite the depletion of circulating T cells, anti-PD-1 recipients mount a higher initial recall response to contact agents. Higher ear swelling was observed with increased inflammation in these mice. Our data suggest anti-PD-1 can liberate local T cell responses in the absence of a contribution from blood, and may offer a model to test therapeutic interventions to alleviate peripheral immune toxicities.ConclusionsOur results suggest that this murine model of contact hypersensitivity represents a potential model for skin immune checkpoint toxicities. This model of locally-mediated inflammatory recall may advance the goal of uncoupling toxicity from efficacy in patients with immune-related adverse events.Ethics ApprovalThe animal study was approved by Weill Cornell Medicine’s IACUC; approval number D16-00186.ReferencesNaidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.Belum VR, Benhuri B, Postow MA, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016;60:12–25. doi: 10.1016/j.ejca.2016.02.010.Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med 2018;378(2):158–168. doi: 10.1056/NEJMra1703481.Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 2019;16(9):563–580. doi: 10.1038/s41571-019-0218-0.Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunotherapy of cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 2017;5(1):95. doi: 10.1186/s40425-017-0300-z.Wills B, Brahmer JR, Naidoo J. Treatment of complications from immune checkpoint inhibition in patients with lung cancer. Curr Treat Options Oncol 2018;19(9):46. doi: 10.1007/s11864-018-0562-9.Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 2016;54:139–148. doi: 10.1016/j.ejca.2015.11.016.Phillips GS, Wu J, Hellmann MD, et al. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol 2019:JCO1802141. doi: 10.1200/JCO.18.02141.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Leng ◽  
Shiying Dang ◽  
Fei Yin ◽  
Tianshun Gao ◽  
Xing Xiao ◽  
...  

Lung cancer is one of the most common and mortal malignancies, usually with a poor prognosis in its advanced or recurrent stages. Recently, immune checkpoint inhibitors (ICIs) immunotherapy has revolutionized the treatment of human cancers including lung adenocarcinoma (LUAD), and significantly improved patients’ prognoses. However, the prognostic and predictive outcomes differ because of tumor heterogeneity. Here, we present an effective method, GDPLichi (Genes of DNA damage repair to predict LUAD immune checkpoint inhibitors response), as the signature to predict the LUAD patient’s response to the ICIs. GDPLichi utilized only 7 maker genes from 8 DDR pathways to construct the predictive model and classified LUAD patients into two subgroups: low- and high-risk groups. The high-risk group was featured by worse prognosis and decreased B cells, CD8+ T cells, CD8+ central memory T cells, hematopoietic stem cells (HSC), myeloid dendritic cells (MDC), and immune scores as compared to the low-risk group. However, our research also suggests that the high-risk group was more sensitive to ICIs, which might be explained by increased TMB, neoantigen, immune checkpoint molecules, and immune suppression genes’ expression, but lower TIDE score as compared to the low-risk group. This conclusion was verified in three other LUAD cohort datasets (GSE30219, GSE31210, GSE50081).


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14037-e14037
Author(s):  
Stephanie A. Berg ◽  
Michael Wesolowski ◽  
Brianna Burke ◽  
Courtney Regan Wagner ◽  
Joseph I Clark ◽  
...  

e14037 Background: Immune-related adverse events (irAEs) related to immune checkpoint inhibitors (ICIs) may target any organ and originate from autoreactive T cells injuring host tissues. There is a need to develop prognostic and predictive biomarkers to distinguish patients (pts) who will benefit from ICIs avoiding irAEs during treatment. We propose that irAEs are the result of many biological variables. We hypothesize that within each pts complex immunological profile, there may be patterns and associations which exist that represent a state of inflammation that is present prior to ICI therapy and hypothesize this could predict irAEs development. Methods: We created individual immunological profiles of 11 pts diagnosed with MM prior to receiving ICIs. Assays included: PBMC composition, circulating chemokines/cytokines, and IκB degradation status. CD4 and CD8 T cells were studied for their phenotype, activation status, proliferative capacity and cytolytic granules. Clinical data was collected on a larger MM pt cohort (n = 41) and descriptive statistics were utilized to characterize reported irAEs . Results: 110 input markers were utilized for immune signature analysis. 6 of the 11 pts reported grade 2+ irAEs after ICI therapy. The pro-inflammatory CCL13, CCL1, FLT-3, IL12p40, TRAIL, and granzyme b expressing CD4 T cells at steady state and after CD3 activation were significantly higher in pts with irAEs. Known inflammatory suspects (i.e., IL-2, IL-15, TNF-a or % CD8 T cells) were not associated with irAE development . A rank correlation test showed significant associations between the levels of these factors. irAEs were reported in 41% (n = 17) for our larger cohort, most frequently skin rash (7%), colitis (7%), hepatitis (7%) and thyroid dysfunction (4%). Conclusions: The immune signatures of pts with irAEs are highly heterogeneous and possess distinctive immunological patterns. Our results introduce possible molecular mechanisms that may aid understanding of irAE development, perhaps providing the basis for a new model prospectively testing these markers to risk stratify pts receiving ICIs.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii105-ii105
Author(s):  
Alexander Hulsbergen ◽  
Asad Lak ◽  
Yu Tung Lo ◽  
Nayan Lamba ◽  
Steven Nagtegaal ◽  
...  

Abstract INTRODUCTION In several cancers treated with immune checkpoint inhibitors (ICIs), a remarkable association between the occurrence of immune-related adverse events (irAEs) and superior oncological outcomes has been reported. This effect has hitherto not been reported in the brain. This study aimed to investigate the relation between irAEs and outcomes in brain metastases (BM) patients treated with both local treatment to the brain (LT; i.e. surgery and/or radiation) and ICIs. METHODS This study is a retrospective cohort analysis of patients treated for non-small cell lung cancer (NSCLC) BMs in a tertiary institution in Boston, MA. Outcomes of interest were overall survival (OS) and intracranial progression-free survival (IC-PFS), measured from the time of LT. Sensitivity analyses were performed to account for immortal time bias (i.e., patients who live longer receive more cycles of ICIs and thus have more opportunity to develop an irAE). RESULTS A total of 184 patients were included; 62 (33.7%) were treated with neurosurgical resection and 122 (66.3%) with upfront brain radiation. irAEs occurred in 62 patients (33.7%). After adjusting for lung-Graded Prognostic Assessment, type of LT, type of ICI, newly diagnosed vs. recurrent BM, BM size and number, targetable mutations, and smoking status, irAEs were strongly associated with better OS (HR 0.33, 95% CI 0.19 – 0.58, p < 0.0001) and IC-PFS (HR 0.41; 95% CI 0.26 – 0.65; p = 0.0001). Landmark analysis including only patients who received more than 3 cycles of ICI (n = 133) demonstrated similar results for OS and IC-PFS, as did sensitivity analysis adjusting for the number of cycles administered (HR range 0.36 – 0.51, all p-values < 0.02). CONCLUSIONS After adjusting for known prognostic factors, irAEs strongly predict superior outcomes after LT in NSCLC BM patients. Sensitivity analysis suggests that this is unlikely due to immortal time bias.


Sign in / Sign up

Export Citation Format

Share Document