scholarly journals Overwhelming Evidence Transplacental Transmission of Human Papillomavirus Primarily Causes Autism

2021 ◽  
pp. 1-7
Author(s):  
Dianne E. Godar ◽  
Dianne E. Godar

Because the concordance rate between identical twins is only 88%, an environmental factor must cause autism spectrum disorder (ASD). Furthermore, when identical twins share ASD, it is to varying degrees suggesting different prenatal environments exist, which occurs when identical twins have separate placentas (~30% of the time). Placental inclusions are predictive of ASD along with excessive increases in extra-axial cerebral spinal fluid (CSF) detected by MRI in the brains of 6- and 12-month-old infants later diagnosed at 2 years with ASD. The human papillomavirus (HPV) can infect the trophoblast cells of placentas and transmit to the fetus where it infects the epithelial cells of the choroid plexus, a centrally located lining inside the brain responsible for producing CSF via the SLC4A10 gene product. HPV causes epigenetic changes, deletions, and duplications of genes, and besides its characteristic methylation patterns, the SLC4A10 gene was found to be increased in children with ASD. Moreover, male placentas implant close to the cervix (low-lying) three times more often than female placentas paralleling the ASD ratio of ~3:1 (boys to girls). Finally, the Australian HPV vaccination programme that began in 2007 might explain why the 0-4 yr. ASD incidence did not increase from 2010 to 2015.

2020 ◽  
Vol 75 (3) ◽  
pp. 189-195
Author(s):  
Vladislav I. Krasnopolsky ◽  
Nina V. Zarochentseva ◽  
Ksenia V. Krasnopolskaya ◽  
Yulia N. Bashankaeva ◽  
Varvara S. Kuzmicheva

The purpose of the review a synthesis of research data on the role of human papillomavirus infection in the reproductive health of women and men. Key Points. Human papillomavirus (HPV) is one of the most common sexually transmitted viruses worldwide. According to the World Health Organization, HPV is the main cause of the development of HPV-associated diseases among both women and men. Viruses are subdivided into HPV with low carcinogenic risk, which cause benign warts, and HPV with high carcinogenic risk, which cause cancer. Different types of human papillomaviruses depending on their characteristic tropism, are divided into skin and mucous types. Viral infection in men leads to a decrease in the quality of sperm (for example, asthenozoospermia) due to apoptosis in sperm cells and due to the development of antisperm immunity. A negative viral effect on the fertility of women is manifested in an increase in the frequency of spontaneous miscarriages and a premature rupture of the amniotic membranes during pregnancy. There is evidence that HPV decreases the number of trophoblastic cells and abnormal trophoblastic-endometrial adhesion is also observed. In trophoblastic cells transfected with high-risk HPV, the level of apoptosis increases. HPV vaccination is safe, and the results show not only protection against HPV-associated diseases in women and men, but also a reduction of gestational complications, reduced preterm birth rates and the protection of newborns from infection.


2014 ◽  
pp. 133-139
Author(s):  
Duc Tam Lam ◽  
Vu Quoc Huy Nguyen

Backgroud: Cervical cancer is a common disease after breast cancer. That is caused by Human papillomavirus (HPV) and now, we have HPV vaccin to prevent the disease with objectives: to determine rate of correct knowledge, attitudes and practice towards HPV vaccination against cervical cancer of mothers who have daughters aged 1 to 26 years old in An Binh ward, Ninh Kieu district, Can Tho city and to determine the relationship between correct knowledge and correct attitudes and correct behaviors towards vaccination against cervical cancer of these mothers. Materials and method: Cross-sectional, community survey on 410 mothers who are interviewed face to face by using a questionnaire. Results: The rate of correct knowledge, attitude and practice towards HPV vaccination against cervical cancer is 4.4%; 89.5%; 12.2%; respectively. There’s a correlation between correct knowledge and correct behaviors towards vaccination against cervical cancer among mothers (p<0.05), but no correlation between correct knowledge and correct attitudes. Conclusion: the rate of mothers who have correct knowledge and behaviors is relatively low but whose correct attitude is high. Therefore, may be they want to know more information about vaccination against cervical cancer so that it should have appropriate information-education-counseling and health care campaign to community. Keywords: Knowledge, Attitude, practice, vaccine, Human papillomavirus, cervical


2020 ◽  
Vol 14 (2) ◽  
pp. 170-174
Author(s):  
Koichi Kawada ◽  
Nobuyuki Kuramoto ◽  
Seisuke Mimori

: Autism spectrum disorder (ASD) is a neurodevelopmental disease, and the number of patients has increased rapidly in recent years. The causes of ASD involve both genetic and environmental factors, but the details of causation have not yet been fully elucidated. Many reports have investigated genetic factors related to synapse formation, and alcohol and tobacco have been reported as environmental factors. This review focuses on endoplasmic reticulum stress and amino acid cycle abnormalities (particularly glutamine and glutamate) induced by many environmental factors. In the ASD model, since endoplasmic reticulum stress is high in the brain from before birth, it is clear that endoplasmic reticulum stress is involved in the development of ASD. On the other hand, one report states that excessive excitation of neurons is caused by the onset of ASD. The glutamine-glutamate cycle is performed between neurons and glial cells and controls the concentration of glutamate and GABA in the brain. These neurotransmitters are also known to control synapse formation and are important in constructing neural circuits. Theanine is a derivative of glutamine and a natural component of green tea. Theanine inhibits glutamine uptake in the glutamine-glutamate cycle via slc38a1 without affecting glutamate; therefore, we believe that theanine may prevent the onset of ASD by changing the balance of glutamine and glutamate in the brain.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Reymundo Lozano ◽  
Catherine Gbekie ◽  
Paige M. Siper ◽  
Shubhika Srivastava ◽  
Jeffrey M. Saland ◽  
...  

AbstractFOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 856
Author(s):  
Akiyo Hineno ◽  
Shu-Ihi Ikeda

In Japan, a significant number of adolescent females noted unusual symptoms after receiving the human papillomavirus (HPV) vaccination, of which the vast majority of them were initially diagnosed with psychiatric illnesses because of the absence of pathologic radiological images and specific abnormalities in laboratory test results. Later these symptoms were thought to be adverse effects of HPV vaccination. However, a causal link between HPV vaccination and the development of these symptoms has not been demonstrated. Between June 2013 and March 2021, we examined 200 patients who noted various symptoms after HPV vaccination. In total, 87 were diagnosed with HPV vaccination-related symptoms based on our proposed diagnostic criteria. The clinical histories of these 87 patients were analyzed. The age at initial vaccination ranged from 11 to 19 years old (mean ± SD: 13.5 ± 1.5 years old), and the age at the first appearance of symptoms ranged from 12 to 20 years old (mean ± SD: 14.3 ± 1.6 years old). The patients received an initial HPV vaccine injection between May 2010 and May 2013, but the first affected patient developed symptoms in October 2010, and the last affected developed symptoms in October 2015. A cluster of patients with a post-HPV vaccination disorder has not appeared in Japan during the last five years. Our study shows that, in Japan, the period of HPV vaccination considerably overlapped with that of a unique post-HPV vaccination disorder development. This disorder appears as a combination of orthostatic intolerance, chronic regional pain syndrome, and cognitive dysfunction, but its exact pathogenesis remains unclear.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A11-A12
Author(s):  
Carolyn Jones ◽  
Randall Olson ◽  
Alex Chau ◽  
Peyton Wickham ◽  
Ryan Leriche ◽  
...  

Abstract Introduction Glutamate concentrations in the cortex fluctuate with the sleep wake cycle in both rodents and humans. Altered glutamatergic signaling, as well as the early life onset of sleep disturbances have been implicated in neurodevelopmental disorders such as autism spectrum disorder. In order to study how sleep modulates glutamate activity in brain regions relevant to social behavior and development, we disrupted sleep in the socially monogamous prairie vole (Microtus ochrogaster) rodent species and quantified markers of glutamate neurotransmission within the prefrontal cortex, an area of the brain responsible for advanced cognition and complex social behaviors. Methods Male and female prairie voles were sleep disrupted using an orbital shaker to deliver automated gentle cage agitation at continuous intervals. Sleep was measured using EEG/EMG signals and paired with real time glutamate concentrations in the prefrontal cortex using an amperometric glutamate biosensor. This same method of sleep disruption was applied early in development (postnatal days 14–21) and the long term effects on brain development were quantified by examining glutamatergic synapses in adulthood. Results Consistent with previous research in rats, glutamate concentration in the prefrontal cortex increased during periods of wake in the prairie vole. Sleep disruption using the orbital shaker method resulted in brief cortical arousals and reduced time in REM sleep. When applied during development, early life sleep disruption resulted in long-term changes in both pre- and post-synaptic components of glutamatergic synapses in the prairie vole prefrontal cortex including increased density of immature spines. Conclusion In the prairie vole rodent model, sleep disruption on an orbital shaker produces a sleep, behavioral, and neurological phenotype that mirrors aspects of autism spectrum disorder including altered features of excitatory neurotransmission within the prefrontal cortex. Studies using this method of sleep disruption combined with real time biosensors for excitatory neurotransmitters will enhance our understanding of modifiable risk factors, such as sleep, that contribute to the altered development of glutamatergic synapses in the brain and their relationship to social behavior. Support (if any) NSF #1926818, VA CDA #IK2 BX002712, Portland VA Research Foundation, NIH NHLBI 5T32HL083808-10, VA Merit Review #I01BX001643


Sign in / Sign up

Export Citation Format

Share Document