scholarly journals Experimental Study on the Residual Axial Load-Carrying Capacity of Shear-Damaged RC Columns

2018 ◽  
Vol 16 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Yong Yang ◽  
Kazuto Matsukawa ◽  
Ho Choi ◽  
Yoshiaki Nakano
2017 ◽  
Vol 10 (2) ◽  
pp. 431-448 ◽  
Author(s):  
Masoud Abedini ◽  
Azrul A. Mutalib ◽  
Sudharshan N. Raman ◽  
Shahrizan Baharom ◽  
J. Sima Nouri

Author(s):  
Trung Hieu Nguyen ◽  
Xuan Dat Pham ◽  
Khuong Duy Tran

Strengthening of reinforced concrete (RC) columns is needed when the actual load-carrying capacity of the columns does not reach the required level due to either structural deterioration or increasing acting loads. This experimental study aims to evaluate the strengthening effect on the eccentrically-compressed RC columns using Carbon fiber reinforced polymer (CFRP) sheets, that confine around the column cross-section. Three RC column specimens with the same geometrical dimensions, reinforcement detailing, and concrete compressive strength were cast and tested in the current experimental investigation. One RC column without being strengthened is referred as the control specimen whereas two other RC columns were partially strengthened by CFRP sheets. All three RC columns were axially loaded with the same initial eccentricity e0 of 80 mm. Based on the test results such as the ultimate load-carrying capacity, the load-rotation relationship, and load-curvature at the middle of column height, the effectiveness of the strengthening technique is discussed.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 590-601
Author(s):  
Hamed Rahman Shokrgozar ◽  
Vahid Akrami ◽  
Tayebeh Jafari Ma'af ◽  
Naseraldin Shahbazi

2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


2018 ◽  
Vol 22 (7) ◽  
pp. 1554-1565 ◽  
Author(s):  
Jianwei Tu ◽  
Kui Gao ◽  
Lang He ◽  
Xinping Li

At present, extensive studies have been conducted relative to the topic of fiber-reinforced polymer(FRP)- reinforced concrete (RC) flexural members, and many design methods have also been introduced. There have, however, been few studies conducted on the topic of FRP-RC compression members. In light of this, eight glass-fiber-reinforced polymer (GFRP)-RC square columns (200×200×600 mm) were tested in order to investigate their axial compression performance. These columns were reinforced with GFRP longitudinal reinforcement and confined GFRP stirrup. These experiments investigated the effects of the longitudinal reinforcement ratio, stirrup configuration (spirals versus hoops) and spacing on the load-carrying capacity and failure modes of GFRP-RC rectangular columns. The test results indicate that the load-carrying capacity of longitudinal GFRP bars accounted for 3%-7% of the ultimate load-carrying capacity of the columns. The ultimate load-carrying capacity of RC columns confined with GFRP spirals increased by 0.8%-1.6% with higher ductility, compared to GFRP hoops. Reducing the stirrup spacing may prevent the buckling failure of the longitudinal bars and increase the ductility and load-carrying capacity of the GFRP-RC columns. It has been found that setting the GFRP compressive strength to 35% of the GFRP maximum tensile strength yields a reasonable estimate of ultimate load-carrying capacity of GFRP-RC columns.


2017 ◽  
Vol 8 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Rhys Jones ◽  
Neil Matthews ◽  
Daren Peng ◽  
Nicholas Orchowski

Purpose The purpose of this paper is to describe the results of a combined numerical and experimental study into the ability of supersonic particle deposition (SPD) to restore the load carrying capacity of rib stiffened wing planks with simulated stress corrosion cracking (SCC). Design/methodology/approach In this context the experimental results reveal that SCC can result in a dramatic reduction in the load carrying capacity of the structure and catastrophic failure via cracking that tears the length of the structure through buckling. A combined numerical and experimental study then reveals how this reduction, in the load carrying capacity can be overcome by using SPD. Findings This paper is the first to show that SPD can be used to restore the load carrying capacity of rib stiffened structures with SCC. It also shows that SPD repairs can be designed to have only a minimal effect on the local stiffness and hence on the load path. However, care should be taken to ensure that the design is such that premature failure of the SPD does not occur. Originality/value This is the first paper to show that a thin layer of SPD deposited 7,075 aluminium alloy powder on either side of the SCC-simulated stiffener has the potential to restore the load carrying capability of a rib stiffened structure. As such it represents an important first step into establishing the potential for SPD to restore the buckling strength of rib stiffened wing panels containing SCC.


Sign in / Sign up

Export Citation Format

Share Document