scholarly journals A Big Data & Business Intelligence in Government Office Buildings

2021 ◽  
Vol 7 (1) ◽  
pp. 14-17
Author(s):  
Ain Farhana Jamaludin ◽  
Muhammad Najib Razali ◽  
Rohaya Abdul Jalil ◽  
Siti Hajar Othman ◽  
Yasmin Mohd Adnan

Effective maintenance management requires proper data management for decision-making purposes. Big Data (BD) and Business Intelligence’s (BI) growing trend has created many challenges for government data management in particular. The government finds difficulties in integrating the massive volume of data with high-speed processing due to incapable database management in the current system, and the issues are not appropriately addressed. This paper contributes significantly, which focuses on an intelligent system that lets the government make an integral part of decision-making and can be applied horizontally to solve the problems in practice. Accordingly, an efficient data repository system with real-time analysis is proposed in this paper and it looks at a real case study highlighting the need for proper data management in government.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Syed Iftikhar Hussain Shah ◽  
Vassilios Peristeras ◽  
Ioannis Magnisalis

AbstractThe public sector, private firms, business community, and civil society are generating data that is high in volume, veracity, velocity and comes from a diversity of sources. This kind of data is known as big data. Public Administrations (PAs) pursue big data as “new oil” and implement data-centric policies to transform data into knowledge, to promote good governance, transparency, innovative digital services, and citizens’ engagement in public policy. From the above, the Government Big Data Ecosystem (GBDE) emerges. Managing big data throughout its lifecycle becomes a challenging task for governmental organizations. Despite the vast interest in this ecosystem, appropriate big data management is still a challenge. This study intends to fill the above-mentioned gap by proposing a data lifecycle framework for data-driven governments. Through a Systematic Literature Review, we identified and analysed 76 data lifecycles models to propose a data lifecycle framework for data-driven governments (DaliF). In this way, we contribute to the ongoing discussion around big data management, which attracts researchers’ and practitioners’ interest.



2021 ◽  
pp. 1-30
Author(s):  
Lisa Grace S. Bersales ◽  
Josefina V. Almeda ◽  
Sabrina O. Romasoc ◽  
Marie Nadeen R. Martinez ◽  
Dannela Jann B. Galias

With the advancement of technology, digitalization, and the internet of things, large amounts of complex data are being produced daily. This vast quantity of various data produced at high speed is referred to as Big Data. The utilization of Big Data is being implemented with success in the private sector, yet the public sector seems to be falling behind despite the many potentials Big Data has already presented. In this regard, this paper explores ways in which the government can recognize the use of Big Data for official statistics. It begins by gathering and presenting Big Data-related initiatives and projects across the globe for various types and sources of Big Data implemented. Further, this paper discusses the opportunities, challenges, and risks associated with using Big Data, particularly in official statistics. This paper also aims to assess the current utilization of Big Data in the country through focus group discussions and key informant interviews. Based on desk review, discussions, and interviews, the paper then concludes with a proposed framework that provides ways in which Big Data may be utilized by the government to augment official statistics.



2019 ◽  
Vol 56 (6) ◽  
pp. 103135 ◽  
Author(s):  
Saqib Shamim ◽  
Jing Zeng ◽  
Syed Muhammad Shariq ◽  
Zaheer Khan


10.28945/2192 ◽  
2015 ◽  
Author(s):  
Rogério Rossi ◽  
Kechi Hirama

[The final form of this paper was published in the journal Issues in Informing Science and Information Technology.] Considering that big data is a reality for an increasing number of organizations in many areas, its management represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial dimensions to facilitate the management of big data in any organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management must be supported by technology, people and processes; hence, this article discusses these three dimensions: the technologies for storage, analysis and visualization of big data; the human aspects of big data; and, in addition, the process management involved in a technological and business approach for big data management.



Author(s):  
Muhammad Mazhar Ullah Rathore ◽  
Awais Ahmad ◽  
Anand Paul

Geosocial network data provides the full information on current trends in human, their behaviors, their living style, the incidents and events, the disasters, current medical infection, and much more with respect to locations. Hence, the current geosocial media can work as a data asset for facilitating the national and the government itself by analyzing the geosocial data at real-time. However, there are millions of geosocial network users, who generates terabytes of heterogeneous data with a variety of information every day with high-speed, termed as Big Data. Analyzing such big amount of data and making real-time decisions is an inspiring task. Therefore, this book chapter discusses the exploration of geosocial networks. A system architecture is discussed and implemented in a real-time environment in order to process the abundant amount of various social network data to monitor the earth events, incidents, medical diseases, user trends and thoughts to make future real-time decisions as well as future planning.



Author(s):  
Mahesh G. T. ◽  
Nandeesha B.

Data has changed the world in an unbelievable way and made an impact on our lifestyles at an exceptional rate. Big data is now the latest science of exploring and forecasting human-machine behavior dealing with a massive amount of associated data. The study is intended to understand the intensity and the competencies of librarians in implementing big data initiative project in academic libraries by the Government of Karnataka State. The study also tries to understand the application of big data in these libraries; 68 (87.17%) librarians completed the survey out of 78 respondents. The results of the study showed a strong association, that is, 72 (92.30%) respondents had the essential competencies and 58 (75.64%) librarians ability, intensity, readiness in implementing big data in academic libraries.



2014 ◽  
Vol 685 ◽  
pp. 524-527
Author(s):  
Yan Ju Zhu

The article mainly researches on the application of big data in the environment decision-making of the government. Through the integration of the technology of Internet, video compression, computer processing, we pose the model of the government environmental data platform. The platform includes the environmental data acquisition platform, the environmental decision-making platform and the environmental management platform.



Author(s):  
M. Ali ◽  
T. K. Sheng ◽  
K. M. Yusof ◽  
M. R. Suhaili ◽  
N. E. Ghazali ◽  
...  

Transportation has been considered as the backbone of the economy for the past many years. Unfortunately, since few years due to the uncontrolled urbanization and inadequate planning, countries are facing problem of congestion. The congestion is hindering the economic growth and also causing environmental issues. This has caused serious concerns among the major economies of the world, especially in Asia-Pacific region. Many countries are playing an active role in eradicating this problem and some have been quite successful so far. Malaysia, being a major ASEAN economy is also tackling with this huge problem. The authorities are committed to solve the issue. In this regard, solving the issue leveraging the use of big data analytics has become crucial. The authorities can form a complete robust framework based on big data analytics and decision making process to solve the issue effectively. The work focuses and observes the traffic data samples and analyzes the accuracy of machine learning algorithms, which helps in decision making. Yet, here is a lot to be done if the government needs to solve the problem effectively. Supposedly, a comprehensive big data transport framework leveraging machine learning, is one way to solve the issue.



Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jie Liu

With the advent of Industry 4.0, economic development has become a rapid information age. The content of macroeconomic forecast is very extensive, and the existence of big data technology can provide the government with multilevel, diversified, and complete information and comprehensively process, integrate, summarize, and classify these pieces of information. This paper forecasts the CPI value in the next 12 months according to the CPI in China in the recent 20 years. Compared with the traditional forecasting methods, the forecasting results have higher accuracy and timeliness. At the same time, the trend of growth rate of industrial value-added is analyzed, and the experiments on MAE and RMSE show that the method proposed in this paper has obvious advantages. It also analyzes the disadvantages of traditional psychological decision-making behavior analysis, introduces the development status and advantages of big data-driven psychological decision-making behavior analysis, and opens up new research ideas for psychological decision-making analysis.



10.28945/2204 ◽  
2015 ◽  
Vol 12 ◽  
pp. 165-180 ◽  
Author(s):  
Rogério Rossi ◽  
Kechi Hirama

Big data management is a reality for an increasing number of organizations in many areas and represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial to facilitate the management of big data in any kind of organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management can be supported by these three dimensions: technology, people and processes. Hence, this article discusses these dimensions: the technological dimension that is related to storage, analytics and visualization of big data; the human aspects of big data; and, in addition, the process management dimension that involves in a technological and business approach the aspects of big data management.



Sign in / Sign up

Export Citation Format

Share Document