Sedimentology, petrography, and deposition of the Upper Cretaceous Codell Sandstone in the Denver Basin

2021 ◽  
Vol 58 (3) ◽  
pp. 249-304
Author(s):  
Mark Longman ◽  
Virginia Gent ◽  
James Hagadorn

We integrate new and previous stratigraphic and petrographic data for the mid-Turonian Codell Sandstone to interpret its provenance, depositional characteristics, and environments. Our focus is on sedimentologic, X-ray diffraction, and X-ray fluorescence analyses of cores and thin sections spread throughout the Denver Basin, augmented by interpretation and correlation of well logs, isopach maps, outcrops, and provenance data. Although we treat the Codell as a single mappable unit, it actually consists of two geographically disjunct sandstone packages separated by a southwest-northeast-trending gap, the NoCoZo, short for No Codell Zone. The Codell is everywhere capped by a significant unconformity and across much of the northern Denver Basin rests unconformably on the underlying shales of the Carlile Shale. In the southern Denver Basin, the Codell commonly contains two parasequences, each of which becomes less muddy upward. Biostratigraphic and geochonologic data suggest that the unit represents deposition over a relatively brief time, spanning ~0.4 Ma from ~91.7 to ~91.3 Ma. The Codell is predominantly a thin (<50 ft) sheet-like package of pervasively bioturbated coarse siltstone and very fine-grained sandstone dominated by quartz and chert grains 50 to 100 μm in diameter. The unit is more phosphatic than the underlying members of the Carlile Shale, and its grain size coarsens to medium-grained in the northern part of the basin. An unusual aspect of the Codell across our study area is the generally excellent grain sorting despite the presence of an intermixed clay matrix. This duality of well sorted grains in a detrital clay matrix is due to the bioturbation that dominates the unit. Such burrowing created a textural inversion that obscures most of the unit’s primary sedimentary structures, except for thin intervals dominated by interlaminated silty shale and very fine sandstone. A relatively widespread and unburrowed example of this bedded facies is preserved in a thin (<10 ft) interval that extends across most of the northern Denver Basin where it is informally called the middle Codell bedded to laminated lithofacies. Sparse beds with hummocky or swaley cross-stratified and ripple cross-laminated fine-grained sandstone are present locally in this bedded facies. We hypothesize that Codell sediments were derived from a major deltaic source extending into the Western Interior Seaway from northwestern Wyoming, and that the Codell was deposited and reworked southward on the relatively flat floor of the Seaway by waxing and waning shelf currents as well as storms and waves. Codell sediments were spread across an area of more than 100,000 mi2 in this epeiric shelf system that spans eastern Colorado, southeastern Wyoming, western Kansas, parts of Nebraska and beyond.

Author(s):  
T. J. Beveridge

The Bacillus subtilis cell wall provides a protective sacculus about the vital constituents of the bacterium and consists of a collection of anionic hetero- and homopolymers which are mainly polysaccharidic. We recently demonstrated that unfixed walls were able to trap and retain substantial amounts of metal when suspended in aqueous metal salt solutions. These walls were briefly mixed with low concentration metal solutions (5mM for 10 min at 22°C), were well washed with deionized distilled water, and the quantity of metal uptake (atomic absorption and X-ray fluorescence), the type of staining response (electron scattering profile of thin-sections), and the crystallinity of the deposition product (X-ray diffraction of embedded specimens) determined.Since most biological material possesses little electron scattering ability electron microscopists have been forced to depend on heavy metal impregnation of the specimen before obtaining thin-section data. Our experience with these walls suggested that they may provide a suitable model system with which to study the sites of reaction for this metal deposition.


2011 ◽  
Vol 64 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Marcondes Lima da Costa ◽  
Gaspar Morcote Rios ◽  
Mônia Maria Carvalho da Silva ◽  
Glayce Jholy da Silva ◽  
Uliana Molano-Valdes

Several Archaeological Dark Earth (ADE) sites have been already found in the Colombian Amazon forest showing high content of archaeological ceramic fragments similarly to those in the Brazilian Amazon represented by Quebrada Tacana site. Their fragments are yellow to grey colour, display a burned clayey matrix which involves fragments of cariapé and coal and ash particles, besides grains of quartz and micas. The clay matrix is made of metakaolinite, quartz, and some mica flakes, chlorite and sepiolite. Cariapé and cauixi spicules are constituted of cristobalite, which is also the main mineral component of the coal and ashes. Although not detected by X-ray diffraction, the phosphate minerals should be present, since the contents of phosphor reach up to 2.90 Wt.% P2O5. Possibly it occurs as aluminium-phosphate, since Ca contents fall below 0.1 Wt.%. These mineralogical and chemical characteristics allow to correlate these ceramic fragments with those found in the ADE in Brazil and reinforce phosphor as an important chemical component, which indicates human activity by the daily use of pottery all over the Amazon region.


2018 ◽  
Vol 51 (6) ◽  
pp. 1571-1585 ◽  
Author(s):  
Graeme Hansford

A conceptual design for a handheld X-ray diffraction (HHXRD) instrument is proposed. Central to the design is the application of energy-dispersive XRD (EDXRD) in a back-reflection geometry. This technique brings unique advantages which enable a handheld instrument format, most notably, insensitivity to sample morphology and to the precise sample position relative to the instrument. For fine-grained samples, including many geological specimens and the majority of common alloys, these characteristics negate sample preparation requirements. A prototype HHXRD device has been developed by minor modification of a handheld X-ray fluorescence instrument, and the performance of the prototype has been tested with samples relevant to mining/quarrying and with an extensive range of metal samples. It is shown, for example, that the mineralogical composition of iron-ore samples can be approximately quantified. In metals analysis, identification and quantification of the major phases have been demonstrated, along with extraction of lattice parameters. Texture analysis is also possible and a simple example for a phosphor bronze sample is presented. Instrument formats other than handheld are possible and online process control in metals production is a promising area. The prototype instrument requires extended measurement times but it is argued that a purpose-designed instrument can achieve data-acquisition times below one minute. HHXRD based on back-reflection EDXRD is limited by the low resolution of diffraction peaks and interference by overlapping fluorescence peaks and, for these reasons, cannot serve as a general-purpose XRD tool. However, the advantages ofin situ, nondestructive and rapid measurement, tolerance of irregular surfaces, and no sample preparation requirement in many cases are potentially transformative. For targeted applications in which the analysis meets commercially relevant performance criteria, HHXRD could become the method of choice through sheer speed and convenience.


2010 ◽  
Vol 37-38 ◽  
pp. 64-67
Author(s):  
Jin Song Chen ◽  
Yin Hui Huang ◽  
Bin Qiao ◽  
Jian Ming Yang ◽  
Yi Qiang He

The principles of jet electrodeposition orientated by rapid prototyping were introduced. The nanocrystalline nickel parts with simple shape were fabricated using jet electrodeposition. The microstructure and phase transformation of nanocrystalline nickel were observed under the scanning microscope and X-ray diffraction instrument. The results show that the jet electrodeposition can greatly enhance the limited current density, fine crystalline particles and improve deposition quality. The nickel parts prepared by jet electrodeposition own a fine-grained structure (average grain size 25.6nm) with a smooth surface and high dimensional accuracy under the optimum processing parameters.


1994 ◽  
Vol 9 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Benjamin L. Ballard ◽  
Paul K. Predecki ◽  
Camden R. Hubbard

Residual strains and microstresses are evaluated for both phase of a hot-pressed, fine-grained α-alumina reinforced with 25 wt% (29 vol%) single-crystal silicon carbide whiskers at temperatures from 25 to 1000 °C. The sample was maintained in a nonoxidizing environment while measurements of the interplaner spacing of alumina (146) and SiC (511 + 333) were made using X-ray diffraction methods. The residual strains were profiled at temperature increments of 250 °C from which the corresponding microstresses were calculated. Linear extrapolation of the SiC ε33 profile indicates that the strains are completely relaxed at a temperature of approximately 1470 °C. These residual stress relaxation results suggest that elevated temperature toughness and fracture strength of this composite may result from cooperative mechanisms.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1488
Author(s):  
Lev B. Zuev ◽  
Galina V. Shlyakhova ◽  
Svetlana A. Barannikova

Radial forging is a reliable way to produce Ti alloy rods without preliminary mechanical processing of their surface, which is in turn a mandatory procedure during almost each stage of the existing technology. In the present research, hot pressing and radial forging (RF) of the titanium-based Ti-3.3Al-5Mo-5V alloy were carried out to study the specifics of plasticized metal flow and microstructural evolution in different sections of the rods. The structural analysis of these rods was performed using metallography and X-ray diffraction techniques. The X-ray diffraction reveals the two-phase state of the alloy. The phase content in the alloy was shown to vary upon radial forging. Finally, radial forging was found to be a reliable method to achieve the uniform fine-grained structure and high quality of the rod surface.


1966 ◽  
Vol 36 (276) ◽  
pp. 1029-1060 ◽  
Author(s):  
G. J. H. McCall

SummaryThe petrography of the Mount Padbury meteorite, previously briefly recorded, is described in some detail. Both the metalliferous host material of the mesosiderite and the varied range of silicate-rich, virtually metal-free enclaves (including both familiar achondrite material and unfamiliar achondrite material) are described. Eucrite, brecciated eucrite, and a peculiar ‘shocked’ form of eucrite (resembling some terrestrial flaser-gabbros) are the calcium-rich achondrite types represented; hypersthene achondrite (including typical diogenite material and unfamiliar material) and olivine achondrite (granular aggregates of olivine not entirely similar to the unique chassignite and single crystals up to 4 in. in length) are the calcium-poor achondrite types represented. The eucrite displays more or less uniform mineralogy, but the mineral constituents are present in varying proportions, and there is a wide range of textural variations recognized. The silicate grain fragments enclosed in the metallic reticulation to form the mesosiderite host material are, significantly, entirely of minerals seen within the achondrite enclaves—plagioclase, hypersthene, pigeonite, olivine, and tridymite.These results include microscopic analysis of thin sections and polished sections, X-ray diffraction studies, optical determination of refractive indices using mineral grain mounts, and chemical analyses.The wider implications of this new and unique meteorite find are briefly considered.


2019 ◽  
Vol 116 (36) ◽  
pp. 17963-17969 ◽  
Author(s):  
Katsuya Araki ◽  
Naoto Yagi ◽  
Koki Aoyama ◽  
Chi-Jing Choong ◽  
Hideki Hayakawa ◽  
...  

Many neurodegenerative diseases are characterized by the accumulation of abnormal protein aggregates in the brain. In Parkinson’s disease (PD), α-synuclein (α-syn) forms such aggregates called Lewy bodies (LBs). Recently, it has been reported that aggregates of α-syn with a cross-β structure are capable of propagating within the brain in a prionlike manner. However, the presence of cross-β sheet-rich aggregates in LBs has not been experimentally demonstrated so far. Here, we examined LBs in thin sections of autopsy brains of patients with PD using microbeam X-ray diffraction (XRD) and found that some of them gave a diffraction pattern typical of a cross-β structure. This result confirms that LBs in the brain of PD patients contain amyloid fibrils with a cross-β structure and supports the validity of in vitro propagation experiments using artificially formed amyloid fibrils of α-syn. Notably, our finding supports the concept that PD is a type of amyloidosis, a disease featuring the accumulation of amyloid fibrils of α-syn.


2016 ◽  
Vol 27 (4) ◽  
pp. 549-560 ◽  
Author(s):  
Natalia Acevedo ◽  
Marion Weber ◽  
Antonio García-Casco ◽  
Joaquín Antonio Proenza ◽  
Juanita Sáenz ◽  
...  

AbstractArchaeometric analyses (Raman Spectroscopy Analysis, X-Ray Diffraction, and Electron Microprobe Analysis) of greenstone beads of the precolumbian Tairona culture (A.D. 1100–1600) of the Sierra Nevada de Santa Marta, Colombia, have revealed that they are made of variscite-group minerals. These beads were curated at the Museo del Oro, Bogotá, and the Archaeology Laboratory of the Universidad del Norte, Barranquilla. Variscite minerals of the variscite-strengite series are rare in nature, and therefore provenance data of source material are useful for the development of intercultural influence models. The abundance of this rare material in prehistoric Colombian collections strongly indicates not only that this material had important symbolic and prestige value for ancient Tairona societies (Nahuange and Tairona periods) but also that these societies participated in ancient trade routes, including, at least, the Andes of present-day Colombia and Venezuela, and the southern Caribbean coast.


2007 ◽  
Vol 558-559 ◽  
pp. 1299-1304 ◽  
Author(s):  
Børge Forbord ◽  
Ragnvald H. Mathiesen ◽  
Hans Jørgen Roven

In-situ synchrotron X-ray diffraction has been applied in order to study grain growth in an ultra-fine grained (D~400 nm) 6060 aluminium alloy at 270°C. The submicron grain structure was produced by Equal Channel Angular Pressing (ECAP) to an effective strain of ~6 without rotation of the billet. As the material was textured after ECAP, the initial stages of grain growth were seldom detected, but in the grain size interval available for studies a grain growth exponent of 3.6±0.3 was obtained. By interpolation of the grain growth curves to D=D0 (determined by EBSD) the effect of growth on the softening of the alloy was estimated. The interpolated average curve indicates that the initial stages of softening are not due to uniform grain growth, but rather reconfiguration and annihilation of dislocations as well as overaging of hardening precipitates.


Sign in / Sign up

Export Citation Format

Share Document