scholarly journals Development of an algorithm for object access system automation based on face recognition using a neural network

Connectivity ◽  
2020 ◽  
Vol 145 (3) ◽  
Author(s):  
V. S. Orlenko ◽  
◽  
I. I. Kolosinsʹkyy

The article deals with the technical side of face recognition — the neural network. The advantages of the neural network for identification of the person are substantiated, the stages of comparison of two images are considered. The first step is defined as the face search in the photo. Using several tests, the best neural network was identified, which allowed to effectively obtain a normalized image of a person’s face. The second step is to find the features of the person, for which the comparative analysis is performed. It was this stage that became the main point in this article — 16 sets of tests were carried out, each test set has 12 tests inside. Two large datasets were used for the study to evaluate the effectiveness of the algorithms not only in ideal circumstances but also in the field. The results of the study allowed us to determine the best method and neural model for finding a face and dividing it into parts. It is determined which part of the face the algorithm recognizes best — it will allow making adjustments to the location of the camera.

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Archana Harsing Sable ◽  
Sanjay N. Talbar

Abstract Numerous algorithms have met complexity in recognizing the face, which is invariant to plastic surgery, owing to the texture variations in the skin. Though plastic surgery serves to be a challenging issue in the domain of face recognition, the concerned theme has to be restudied for its hypothetical and experimental perspectives. In this paper, Adaptive Gradient Location and Orientation Histogram (AGLOH)-based feature extraction is proposed to accomplish effective plastic surgery face recognition. The proposed features are extracted from the granular space of the faces. Additionally, the variants of the local binary pattern are also extracted to accompany the AGLOH features. Subsequently, the feature dimensionality is reduced using principal component analysis (PCA) to train the artificial neural network. The paper trains the neural network using particle swarm optimization, despite utilizing the traditional learning algorithms. The experimentation involved 452 plastic surgery faces from blepharoplasty, brow lift, liposhaving, malar augmentation, mentoplasty, otoplasty, rhinoplasty, rhytidectomy and skin peeling. Finally, the proposed AGLOH proves its performance dominance.


2014 ◽  
Vol 998-999 ◽  
pp. 869-872
Author(s):  
Na Li ◽  
Peng He ◽  
Qian Zhao

In the course of the face feature match, many classifiers have been designed. The neural network is usually selected as a classifier because of its validity and universality, whereas its training time, training epochs, and its convergence, all are not satisfied to us. It is often influenced by the author’s experience. In the case, a collaborative genetic algorithm and neural network is presented as a new face recognition classifier. The one thing is to train the NN weights by the GA until the stopping criterion is met, and the next thing is to use the BP algorithm to continue to train the network. The training time and training epochs have been improved in the experiment of the face recognition on ORL face database. The simulation shows the validity of methods.


2018 ◽  
Vol 8 (8) ◽  
pp. 1290 ◽  
Author(s):  
Beata Mrugalska

Increasing expectations of industrial system reliability require development of more effective and robust fault diagnosis methods. The paper presents a framework for quality improvement on the neural model applied for fault detection purposes. In particular, the proposed approach starts with an adaptation of the modified quasi-outer-bounding algorithm towards non-linear neural network models. Subsequently, its convergence is proven using quadratic boundedness paradigm. The obtained algorithm is then equipped with the sequential D-optimum experimental design mechanism allowing gradual reduction of the neural model uncertainty. Finally, an emerging robust fault detection framework on the basis of the neural network uncertainty description as the adaptive thresholds is proposed.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 237
Author(s):  
R Aswini Priyanka ◽  
C Ashwitha ◽  
R Arun Chakravarthi ◽  
R Prakash

In scientific world, Face recognition becomes an important research topic. The face identification system is an application capable of verifying a human face from a live videos or digital images. One of the best methods is to compare the particular facial attributes of a person with the images and its database. It is widely used in biometrics and security systems. Back in old days, face identification was a challenging concept. Because of the variations in viewpoint and facial expression, the deep learning neural network came into the technology stack it’s been very easy to detect and recognize the faces. The efficiency has increased dramatically. In this paper, ORL database is about the ten images of forty people helps to evaluate our methodology. We use the concept of Back Propagation Neural Network (BPNN) in deep learning model is to recognize the faces and increase the efficiency of the model compared to previously existing face recognition models.   


NeuroImage ◽  
2018 ◽  
Vol 169 ◽  
pp. 151-161 ◽  
Author(s):  
Yuanfang Zhao ◽  
Zonglei Zhen ◽  
Xiqin Liu ◽  
Yiying Song ◽  
Jia Liu

2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.


2020 ◽  
pp. 1-22 ◽  
Author(s):  
D. Sykes ◽  
A. Grivas ◽  
C. Grover ◽  
R. Tobin ◽  
C. Sudlow ◽  
...  

Abstract Using natural language processing, it is possible to extract structured information from raw text in the electronic health record (EHR) at reasonably high accuracy. However, the accurate distinction between negated and non-negated mentions of clinical terms remains a challenge. EHR text includes cases where diseases are stated not to be present or only hypothesised, meaning a disease can be mentioned in a report when it is not being reported as present. This makes tasks such as document classification and summarisation more difficult. We have developed the rule-based EdIE-R-Neg, part of an existing text mining pipeline called EdIE-R (Edinburgh Information Extraction for Radiology reports), developed to process brain imaging reports, (https://www.ltg.ed.ac.uk/software/edie-r/) and two machine learning approaches; one using a bidirectional long short-term memory network and another using a feedforward neural network. These were developed on data from the Edinburgh Stroke Study (ESS) and tested on data from routine reports from NHS Tayside (Tayside). Both datasets consist of written reports from medical scans. These models are compared with two existing rule-based models: pyConText (Harkema et al. 2009. Journal of Biomedical Informatics42(5), 839–851), a python implementation of a generalisation of NegEx, and NegBio (Peng et al. 2017. NegBio: A high-performance tool for negation and uncertainty detection in radiology reports. arXiv e-prints, p. arXiv:1712.05898), which identifies negation scopes through patterns applied to a syntactic representation of the sentence. On both the test set of the dataset from which our models were developed, as well as the largely similar Tayside test set, the neural network models and our custom-built rule-based system outperformed the existing methods. EdIE-R-Neg scored highest on F1 score, particularly on the test set of the Tayside dataset, from which no development data were used in these experiments, showing the power of custom-built rule-based systems for negation detection on datasets of this size. The performance gap of the machine learning models to EdIE-R-Neg on the Tayside test set was reduced through adding development Tayside data into the ESS training set, demonstrating the adaptability of the neural network models.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3691
Author(s):  
Jian Liang ◽  
Junchao Zhang ◽  
Jianbo Shao ◽  
Bofan Song ◽  
Baoli Yao ◽  
...  

Phase unwrapping is a very important step in fringe projection 3D imaging. In this paper, we propose a new neural network for accurate phase unwrapping to address the special needs in fringe projection 3D imaging. Instead of labeling the wrapped phase with integers directly, a two-step training process with the same network configuration is proposed. In the first step, the network (network I) is trained to label only four key features in the wrapped phase. In the second step, another network with same configuration (network II) is trained to label the wrapped phase segments. The advantages are that the dimension of the wrapped phase can be much larger from that of the training data, and the phase with serious Gaussian noise can be correctly unwrapped. We demonstrate the performance and key features of the neural network trained with the simulation data for the experimental data.


Sign in / Sign up

Export Citation Format

Share Document