scholarly journals Temporal changes in plasma concentrations of hormones and metabolites in pasture-fed dairy cows during extended lactation

2011 ◽  
Vol 94 (10) ◽  
pp. 5017-5026 ◽  
Author(s):  
L.C. Marett ◽  
M.J. Auldist ◽  
C. Grainger ◽  
W.J. Wales ◽  
D. Blache ◽  
...  
2019 ◽  
Vol 102 (1) ◽  
pp. 799-810 ◽  
Author(s):  
G. Niozas ◽  
G. Tsousis ◽  
I. Steinhöfel ◽  
C. Brozos ◽  
A. Römer ◽  
...  

2011 ◽  
Vol 79 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Qendrim Zebeli ◽  
Sarah J Terrill ◽  
Alberto Mazzolari ◽  
Suzanna M Dunn ◽  
Wen Z Yang ◽  
...  

This study evaluated the effects of intraruminal administration ofMegasphaera elsdeniion ruminal fermentation patterns, the profile of plasma metabolites, and milk yield and composition of mid-lactation dairy cows. Eight primiparous, ruminally cannulated Holstein cows were arranged in a paired 2×2 crossover design. Cows were randomly assigned to one of two treatments: 1) intraruminal inoculation of 35 ml suspension per day ofM. elsdeniiATCC 25940 (MEGA), containing 108cfu/ml of bacteria, dissolved in 35 ml of saline (0·15m), or 2) carrier alone (35 ml saline; CTR). Both postprandial and preprandial rumen volatile fatty acids (VFA) and plasma metabolite measurements were analysed. Postprandial VFA patterns were affected the most, with butyrate (P<0·01) and valerate (P<0·01) proportions increasing, and acetate (P<0·01), isobutyrate (P=0·05) and isovalerate (P<0·01) decreasing in MEGA cows. Preprandial data measured at various days showed that MEGA dosage tended to increase the molar proportion of propionate (P=0·09) and lower the acetate to propionate ratio (P=0·07) in the rumen fluid. There was no effect of treatment on rumen pH and on the concentration of lactate in the rumen as well as on selected preprandial plasma metabolites. Postprandial plasma concentrations of cholesterol tended to increase (P=0·07) in MEGA cows compared with CTR. Concentrations of non-esterified fatty acids (NEFA) in the plasma were lower in MEGA cows after the morning feeding (P<0·01). Sampling hour also affected plasma NEFA in this study. Plasma β-hydroxybutyrate (BHBA) were not affected by the treatment (P>0·05); however, after the morning feeding BHBA concentration was increased in both groups of cows. Dry matter intake and milk yield and composition were not affected by treatment. In conclusion, results indicate thatM. elsdeniihas the potential to modulate the rumen fermentation profile in mid-lactation Holstein cows, but these effects were only slightly reflected in changes in plasma metabolites and milk composition.


2018 ◽  
Vol 53 (4) ◽  
pp. 1013-1015 ◽  
Author(s):  
RA Elgawish ◽  
Y Ogata ◽  
T Hidaka ◽  
T Nii ◽  
Y Yoshimura ◽  
...  

2001 ◽  
Vol 26 (1) ◽  
pp. 147-159 ◽  
Author(s):  
D. O'Callaghan ◽  
J.M. Lozano ◽  
J. Fahey ◽  
V. Gath ◽  
S. Snijders ◽  
...  

AbstractThe reduced fertility that is becoming more evident in high yielding dairy cows may be related to many factors including changes in milk production, food intake and fluctuations in body condition. Metabolic and production markers have been studied as a way of predicting success to a particular artificial insemination. Successful conception to a particular service was not associated with milk production, body condition or plasma concentrations of several indicators of metabolic state around the time if insemination. This highlights the importance of time of information collection in fertility management programmes. Increased food intake may reduce systemic progesterone concentrations. This is more evident in sheep than cattle, but a positive relationship between systemic progesterone early post mating and establishment of pregnancy in cattle has been reported. However, progesterone concentrations in the ovarian vein and endometrium are not strongly correlated with systemic progesterone. Thus, the significance of modest changes in systemic progesterone in affecting oocyte and embryo development must be questioned. Blood urea concentrations can be altered by diet, and reduced pregnancy rates have been reported in cows with high urea concentrations. However, in other recent studies, no difference was reported in serum urea in cows that conceived and those that failed to conceive. Pregnancy rate was equally high in heifers when in-vitro produced embryos were transferred to heifers on high and low urea diets. When embryos were produced in sheep on high and low dietary urea, the effects on embryo development appear to occur early in the developmental process, suggesting a substantial effect on the development of the oocyte. The developmental capacity of oocytes and quality of embryos is reduced in cattle maintained on extremely high dietary intakes. Oocyte developmental capacity is reduced in cows of higher genetic merit and embryo quality can be substantially reduced in the early postpartum period. Collectively, these results suggest that high dietary intake or high metabolic load is deleterious to normal oocyte development and establishment of pregnancy. This highlights the importance of further studies on the effect of dietary intake on metabolic state and follicle, oocyte and embryo development. In a practical context, these results highlight the importance of nutritional management and avoiding changes in the amount or type of diet around the time of mating in high-production dairy cows.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 313 ◽  
Author(s):  
Rihong Guo ◽  
Fang Chen ◽  
Cheng Mei ◽  
Zicun Dai ◽  
Leyan Yan ◽  
...  

This study was conducted to investigate the feasibility of improving fertility in dairy cows via immunization against inhibin. Thirty-two cows were divided into Control (n = 11), Low-dose (n = 10) and High-dose (n = 11) groups. The High-dose and Low-dose cows were treated with 1 and 0.5 mg of the inhibin immunogen, respectively. All the cows were subjected to the Ovsynch protocol from the day of antigen administration and were artificially inseminated. Blood samples were serially collected over a 24-day period from the start of the Ovsynch protocol to 14 days after insemination. The results showed that immunization against inhibin dose-dependently increased the plasma concentrations of follicle-stimulating hormone (FSH), estradiol (E2), and activin A, but decreased progesterone (P4) concentrations in the luteal phase. Immunization also increased the plasma interferon (IFN)-τ concentrations in pregnant cows on day 14 after initial insemination. The conception rates in High-dose (45.5%) and Low-dose (40%) cows marginally increased compared to that in Control cows (27.3%), but the increases were not significant (p > 0.05). In conclusion, a single immunization against inhibin has the potential to improve conception rates, despite impaired luteal development. To further improve the reproductive performance of dairy cows, additional luteal-stimulating treatments are suggested in combination with immunization against inhibin and Ovsynch techniques.


2014 ◽  
Vol 54 (9) ◽  
pp. 1490 ◽  
Author(s):  
Saranika Talukder ◽  
Kendra L. Kerrisk ◽  
Luke Ingenhoff ◽  
Gianfranco Gabai ◽  
Sergio C. Garcia ◽  
...  

This study was designed to evaluate the plasma profiles of oxidative stress biomarkers, progesterone and ovarian follicle diameter in ovulatory versus an-ovulatory cows. Twenty cows were synchronised using controlled internal drug release (CIDR) and prostaglandinF2α (PGF2α) protocol. Plasma samples were analysed for progesterone (P4), oxidative stress (OS) biomarkers; reactive oxygen metabolites (ROMs), biological antioxidant potential (BAP), oxidative stress index (OSI = ROMs/BAP × 100), advanced oxidation protein products, ceruloplasmin and glutathione (GSH). Plasma P4 concentration was greater in ovulated cows 24 hours (h) after PGF2α treatment but lower 48 h after PGF2α treatment compared with that of an-ovulated cows at those sampling sessions (P < 0.05). Ovulated cows were diagnosed with greater ovarian follicle diameter compared with that of their herd mates not diagnosed for ovulation. Significant interaction of time of PGF2α treatment and ovulation status (ovulatory versus an-ovulatory) with the plasma concentrations of OSI, BAP and GSH were observed. Ovulated cows had significantly lower BAP compared with that of an-ovulated cows (P < 0.05) 9 h, 48 h, 60 h and 128 h after PGF2α treatment. Plasma concentrations of GSH were lower (P < 0.05) in ovulated cows than that of an-ovulated cows 60 h and 96 h after PGF2α treatment. However, OSI was greater (P < 0.05) in ovulated cows than that of an-ovulated cows 9 h, 48 h, 60 h and 128 h after PGF2α treatment. Significant associations were observed between OS status and sampling time. Oxidative stress status may have important physiological role in facilitating the ovulation process in oestrus synchronised dairy cows.


2006 ◽  
Vol 73 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Guillermo E Meglia ◽  
Søren K Jensen ◽  
Charlotte Lauridsen ◽  
Karin Persson Waller

The aim of this study was to compare the effects of supplementing dairy cows with 1000 IU/day of all-rac-α-tocopheryl acetate (SynAc), RRR-α-tocopheryl acetate (NatAc), or RRR-α-tocopherol (NatAlc), from approximately 3 weeks before estimated calving until 2 weeks after calving, on the concentration of α-tocopherol and its stereoisomers (RRR-, RSS-, RRS-, RSR- and the four 2S-forms of α-tocopherol) in blood and milk. An unsupplemented group was included as control. Blood samples were collected at 3, 2 and 1 weeks before estimated calving, at calving, and 3, 7 and 14 days after calving, while milk samples were taken twice within 24 h after calving and at 7 and 14 days in milk. Overall, time and treatment had significant effects on plasma α-tocopherol with higher concentrations in NatAc than in the other groups. In addition, SynAc had higher concentrations than Control, and NatAlc tended to be higher than Control. The lowest plasma concentrations were observed at calving and 3 days after calving. Independent of treatment, the concentration was higher in colostrum than in milk day 7 and 14 after calving. Analyses of the stereoisomer distribution in plasma and milk showed that, irrespective of dietary treatment, RRR-α-tocopherol was the most predominant form, constituting more than 86%, whereas the remaining part of α-tocopherol was made up by the three synthetic 2R isomers, while the 2S isomers only contributed less than 1% of the total α-tocopherol. In control cows and cows supplemented with natural vitamin E, the proportion of RRR-α-tocopherol in plasma and milk constituted more than 98% of the total α-tocopherol. In conclusion, the results indicate that daily oral supplementation of dairy cows with RRR-α-tocopheryl acetate gives the highest blood concentrations of α-tocopherol in the periparturient period. Analyses of the distribution of the individual stereoisomers of α-tocopherol further indicate that the bioavailability of RRR-α-tocopherol relative to synthetic stereoisomers in cattle is considerably higher than officially accepted until now.


Sign in / Sign up

Export Citation Format

Share Document