scholarly journals Feeding of wheat bran and sugar beet pulp as sole supplements in high-forage diets emphasizes the potential of dairy cattle for human food supply

2016 ◽  
Vol 99 (2) ◽  
pp. 1228-1236 ◽  
Author(s):  
P. Ertl ◽  
Q. Zebeli ◽  
W. Zollitsch ◽  
W. Knaus
2016 ◽  
Vol 32 (5) ◽  
pp. 446-453 ◽  
Author(s):  
Paul Ertl ◽  
Qendrim Zebeli ◽  
Werner Zollitsch ◽  
Wilhelm Knaus

AbstractAlthough levels of concentrate supplementation are generally lower in organic as compared with conventional dairy cows, forage-only (FO) diets are not very common in organic dairy cows because of the resulting limited dry matter intake (DMI) and lower milk production. However, from the perspective of net food production, FO diets or forage diets supplemented only with by-products from the food processing industry, offer considerable potential because they do not compete with humans for food. The aim of the present study was therefore to investigate the effects of adding a mixture of wheat bran and dried sugar beet pulp [0.56:0.44 on a dry matter (DM) basis] to a FO diet on DMI, milk production, chewing activity and production efficiency. Seventeen multiparous and three primiparous mid-lactation Holstein cows were randomly assigned to one of two treatments, receiving either a FO mixture with hay and grass silage in equal proportions (FO) or the same forage mixture supplemented with a mixture of wheat bran and dried sugar beet pulp at a rate of 25% of dietary DM (25%BP). The experiment was conducted in a change-over design with two experimental periods of 7 and 6 weeks, respectively. Overall, feeding the 25%BP diet increased DMI and energy-corrected milk (ECM) yield by 1.8 kg d−1 as compared with cows fed FO. Feed conversion efficiency (kg ECM per kg DMI) and energy efficiency (kg ECM per 10 MJ net energy for lactation intake) were higher in FO, but cows fed FO were in a slightly negative energy balance and also tended to have a higher mobilization of body tissues as compared with cows fed 25%BP. In comparison with FO, cows receiving 25%BP showed less chewing activity per kg DMI or per kg neutral detergent fiber ingested. In conclusion, results from this feeding trial showed that adding wheat bran and dried sugar beet pulp to a FO diet increased DMI and milk yield and improved the energy balance when compared with a FO diet, although the magnitude of the milk yield response was lower than expected.


1994 ◽  
Vol 263 (2) ◽  
pp. 257-269 ◽  
Author(s):  
Marie-Christine Ralet ◽  
Craig B. Faulds ◽  
Gary Williamson ◽  
Jean-François Thibault

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 341
Author(s):  
Martin Bachmann ◽  
Sebastian Michel ◽  
Jörg Michael Greef ◽  
Annette Zeyner

Dietary fibers may have positive impact on health and wellbeing of pigs. The study examined physicochemical properties of two lignocelluloses (including and excluding bark), powdered cellulose, Aspergillus niger mycelium, lucerne chaff, soybean shells, wheat bran, and sugar beet pulp in relation to fermentability and digestibility using in vitro batch-culture incubation. Maize starch and a purified cellulose were used as standardized substrates for classification of the test substrates. The substrates covered a wide range regarding their physicochemical properties. Swelling capacity (SC) was 9–411%, water binding capacity (WBC) was 4.4–14.3 g/g dry matter (DM), and water holding capacity (WHC) was 4.1–10.6 g/g DM. Gas production and other fermentation parameters—namely post-incubation pH, CH4, NH3, and short chain fatty acids (SCFA) concentrations—revealed a significant fermentation of sugar beet pulp, soybean shells, lucerne chaff, wheat bran, A. niger mycelium, and powdered cellulose, whereas the lignocelluloses were not fermented. Significant correlations were found between the physicochemical properties and the fermentation parameters (p < 0.05). Enzymatic pre-digestion mostly reduced gas, NH3, and SCFA production. In vitro digestibility of DM (IVDMD) and organic matter (IVOMD) was mostly negligible after enzymatic pre-digestion. Fermentation alone led to only 0.10–0.15 IVDMD and 0.14–0.15 IVOMD in lignocelluloses and powdered cellulose, respectively, but 0.44–0.37 IVDMD and 0.46–0.38 IVOMD in the remainder of substrates (p < 0.05). In vitro digestibility was again correlated with the physicochemical properties of the substrates and the fermentation parameters (p < 0.05). The fiber preparations and fiber-rich byproducts were fermented to a relevant extent. In contrast, lignocelluloses were not fermented and can be used rather as bulk material.


Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


Sign in / Sign up

Export Citation Format

Share Document