Expression of specific signaling components related to muscle protein turnover and of branched-chain amino acid catabolic enzymes in muscle and adipose tissue of preterm and term calves

Author(s):  
H. Sadri ◽  
M.H. Ghaffari ◽  
J. Steinhoff-Wagner ◽  
S. Görs ◽  
H.M. Hammon ◽  
...  
2010 ◽  
Vol 285 (15) ◽  
pp. 11348-11356 ◽  
Author(s):  
Mark A. Herman ◽  
Pengxiang She ◽  
Odile D. Peroni ◽  
Christopher J. Lynch ◽  
Barbara B. Kahn

2009 ◽  
Vol 106 (6) ◽  
pp. 2026-2039 ◽  
Author(s):  
Vinod Kumar ◽  
Philip Atherton ◽  
Kenneth Smith ◽  
Michael J. Rennie

Skeletal muscle demonstrates extraordinary mutability in its responses to exercise of different modes, intensity, and duration, which must involve alterations of muscle protein turnover, both acutely and chronically. Here, we bring together information on the alterations in the rates of synthesis and degradation of human muscle protein by different types of exercise and the influences of nutrition, age, and sexual dimorphism. Where possible, we summarize the likely changes in activity of signaling proteins associated with control of protein turnover. Exercise of both the resistance and nonresistance types appears to depress muscle protein synthesis (MPS), whereas muscle protein breakdown (MPB) probably remains unchanged during exercise. However, both MPS and MPB are elevated after exercise in the fasted state, when net muscle protein balance remains negative. Positive net balance is achieved only when amino acid availability is increased, thereby raising MPS markedly. However, postexercise-increased amino acid availability is less important for inhibiting MPB than insulin, the secretion of which is stimulated most by glucose availability, without itself stimulating MPS. Exercise training appears to increase basal muscle protein turnover, with differential responses of the myofibrillar and mitochondrial protein fractions to acute exercise in the trained state. Aging reduces the responses of myofibrillar protein and anabolic signaling to resistance exercise. There appear to be few, if any, differences in the response of young women and young men to acute exercise, although there are indications that, in older women, the responses may be blunted more than in older men.


1990 ◽  
Vol 79 (5) ◽  
pp. 457-466 ◽  
Author(s):  
Rita J. Louard ◽  
Eugene J. Barrett ◽  
Robert A. Gelfand

1. Using the forearm balance method, together with systemic infusions of l-[ring-2,6-3H]phenylalanine and l-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/ or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.


Sign in / Sign up

Export Citation Format

Share Document