scholarly journals Isocitrate Lyase Activity in Lactobacillus murinus CNRZ 313

1983 ◽  
Vol 66 (6) ◽  
pp. 1232-1236 ◽  
Author(s):  
M.C. Albizzatti de Rivadeneira ◽  
M.C. Manca de Nadra ◽  
A.A. Pesce de Ruiz Holgado ◽  
G. Oliver
1978 ◽  
Vol 24 (2) ◽  
pp. 149-153 ◽  
Author(s):  
T. M. Lakshmi ◽  
Robert B. Helling

Levels of several intermediary metabolites were measured in cells grown in acetate medium in order to test the hypothesis that the glyoxylate cycle is repressed by phosphoenolpyruvate (PEP). Wild-type cells had less PEP than either isocitrate dehydrogenase – deficient cells (which had greater isocitrate lyase activity than the wild type) or isocitrate dehydrogenase – deficient, citrate synthase – deficient cells (which are poorly inducible). Thus induction of the glyoxylate cycle is more complicated than a simple function of PEP concentration. No correlation between enzyme activity and the level of oxaloacetate, pyruvate, or citrate was found either. Citrate was synthesized in citrate synthase – deficient mutants, possibly via citrate lyase.


Weed Science ◽  
1970 ◽  
Vol 18 (5) ◽  
pp. 565-571
Author(s):  
J. A. Mulliken ◽  
C. A. Kust ◽  
L. E. Schrader

Endosperm dry weight, protein, and fat losses accompanied rapid radicle growth of velvetleaf (Abutilon theophrasti Medic.) between 12 and 36 hr of germination at 31 C. Cotyledonary reserves were mobilized after 36 hr. Isocitrate lyase activity sedimented with a particulate fraction in varying degrees, but maximal activity developed at times coincident with fat mobilization. Respiration of excised endosperms reached maximal rates shortly after radicle emergence. The actions of hydrogen cyanide, carbon monoxide, and 2,4-dinitrolphenol indicated that respiration of endosperms excised from imbibed and germinated seed was due to cytochrome oxidase activity, and was coupled to phosphorylation.


2000 ◽  
Vol 182 (24) ◽  
pp. 7007-7013 ◽  
Author(s):  
Marijke A. H. Luttik ◽  
Peter Kötter ◽  
Florian A. Salomons ◽  
Ida J. van der Klei ◽  
Johannes P. van Dijken ◽  
...  

ABSTRACT The Saccharomyces cerevisiae ICL1 gene encodes isocitrate lyase, an essential enzyme for growth on ethanol and acetate. Previous studies have demonstrated that the highly homologousICL2 gene (YPR006c) is transcribed during the growth of wild-type cells on ethanol. However, even when multiple copies are introduced, ICL2 cannot complement the growth defect oficl1 null mutants. It has therefore been suggested thatICL2 encodes a nonsense mRNA or nonfunctional protein. In the methylcitrate cycle of propionyl-coenzyme A metabolism, 2-methylisocitrate is converted to succinate and pyruvate, a reaction similar to that catalyzed by isocitrate lyase. To investigate whetherICL2 encodes a specific 2-methylisocitrate lyase, isocitrate lyase and 2-methylisocitrate lyase activities were assayed in cell extracts of wild-type S. cerevisiae and of isogenicicl1, icl2, and icl1 icl2 null mutants. Isocitrate lyase activity was absent in icl1 andicl1 icl2 null mutants, whereas in contrast, 2-methylisocitrate lyase activity was detected in the wild type and single icl mutants but not in the icl1 icl2mutant. This demonstrated that ICL2 encodes a specific 2-methylisocitrate lyase and that the ICL1-encoded isocitrate lyase exhibits a low but significant activity with 2-methylisocitrate. Subcellular fractionation studies and experiments with an ICL2-green fluorescent protein fusion demonstrated that theICL2-encoded 2-methylisocitrate lyase is located in the mitochondrial matrix. Similar to that of ICL1, transcription of ICL2 is subject to glucose catabolite repression. In glucose-limited cultures, growth with threonine as a nitrogen source resulted in a ca. threefold induction ofICL2 mRNA levels and of 2-methylisocitrate lyase activity in cell extracts relative to cultures grown with ammonia as the nitrogen source. This is consistent with an involvement of the 2-methylcitrate cycle in threonine catabolism.


2017 ◽  
Vol 62 (4) ◽  
Author(s):  
Concepción Hernández-Chinea ◽  
Laura Maimone ◽  
Yelitza Campos ◽  
Walter Mosca ◽  
Pedro J. Romero

AbstractEarly reports have demonstrated the occurrence of glyoxylate cycle enzymes in several


1979 ◽  
Vol 34 (12) ◽  
pp. 1232-1236 ◽  
Author(s):  
Wolfram Koller ◽  
Jürgen Frevert ◽  
Helmut Kindi

Seeds of cucumber fruits at a late stage of ripening were analyzed for microbodies and micro­body components. On isopycnic density gradient centrifugation of homogenates in the presence of EDTA, several particulate fractions were obtained: a light membraneous fraction (density d = 1.09-1.11 kg × 1-1), a mitochondria-enriched fraction (d = 1.21 kg × 1-1), a microbody-enriched fraction (d = 1.23 kg × 1-1), and a protein body fraction (d= 1.26 - 1.29 kg × 1-1). Microbo­dies were revealed by exactly coinciding peaks of malate synthase, catalase and crotonase; small proportions of citrate synthase and malate dehydrogenase were also present in this zone. Isocitrate lyase activity, however, did not occur in the seeds at this stage. The examination of enzyme activi­ties indicated the presence of microbodies which cannot function as competent glyoxysomes be­cause of the lack of isocitrate lyase. Moreover, de novo synthesis from [3H] leucine could be de­monstrated for malate synthase by means of immunoprecipitation of newly synthesized malate synthase and subsequent electrophoretic analysis.


1978 ◽  
Vol 176 (1) ◽  
pp. 179-185 ◽  
Author(s):  
S M Dunham ◽  
C F Thurston

The rate of increase of isocitrate lyase activity was measured in darkened Chlorella fusca var. vaculoata cultures in the presence and absence of acetate and compared with the rate of incorporation of [35S]methionine into isocitrate lyase enzyme protein under the same conditions. Isocitrate lyase enzyme protein was isolated for this purpose by specific immunoprecipitation and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After 4h in the dark, in the presence of acetate the rate of increase of isocitrate lyase activity was 75 times that in the absence of acetate. Incorporation of [35S]methionine into isocitrate lyase was 140 times greater in the presence of acetate. Incorporation of [35S]methionine into the trichloroacetic acid-insoluble fraction overall was about five times as fast in the presence of acetate. These data are not consistent with an increased turnover of isocitrate lyase enzyme molecules, sufficient to account for the low rate of increase of isocitrate lyase activity in the absence of acetate. The greater rate of enzyme synthesis in the presence of acetate must therefore be due to some effect of this metabolite on the processing or translation of isocitrate lyase mRNA.


2005 ◽  
Vol 73 (10) ◽  
pp. 6736-6741 ◽  
Author(s):  
Daniel M. Wall ◽  
Pamela S. Duffy ◽  
Chris DuPont ◽  
John F. Prescott ◽  
Wim G. Meijer

ABSTRACT Rhodococcus equi is an important pathogen of foals, causing severe pyogranulomatous pneumonia. Virulent R. equi strains grow within macrophages, a process which remains poorly characterized. A potential source of carbon for intramacrophage R. equi is membrane lipid-derived fatty acids, which following β oxidation are assimilated via the glyoxylate bypass. To assess the importance of isocitrate lyase, the first enzyme of the glyoxylate bypass, in virulence of a foal isolate of R. equi, a mutant was constructed by a strategy of single homologous recombination using a suicide plasmid containing an internal fragment of the R. equi aceA gene encoding isocitrate lyase. Complementation of the resulting mutant with aceA showed that the mutant was specific for this gene. Assessment of virulence in a mouse macrophage cell line showed that the mutant was killed, in contrast to the parent strain. Studies in the liver of intravenously infected mice showed enhanced clearance of the mutant. When four 3-week-old foals were infected intrabronchially, the aceA mutant was completely attenuated, in contrast to the parent strain. In conclusion, the aceA gene was shown to be essential for virulence of R. equi, suggesting that membrane lipids may be an important source of carbon for phagocytosed R. equi.


Author(s):  
Elias Abdou ◽  
María P. Jiménez de Bagüés ◽  
Ignacio Martínez-Abadía ◽  
Safia Ouahrani-Bettache ◽  
Véronique Pantesco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document