scholarly journals Evaluation of Several Nonstarter Lactobacilli for Their Influence on Cheddar Cheese Slurry Proteolysis

1999 ◽  
Vol 82 (7) ◽  
pp. 1370-1378 ◽  
Author(s):  
M.R. Muehlenkamp-Ulate ◽  
J.J. Warthesen
Keyword(s):  
Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 898
Author(s):  
Hebatoallah Hassan ◽  
Daniel St-Gelais ◽  
Ahmed Gomaa ◽  
Ismail Fliss

Clostridium tyrobutyricum spores survive milk pasteurization and cause late blowing of cheeses and significant economic loss. The effectiveness of nisin-producing Lactococcus lactis ssp. lactis 32 as a protective strain for control the C. tyrobutyricum growth in Cheddar cheese slurry was compared to that of encapsulated nisin-A. The encapsulated nisin was more effective, with 1.0 log10 reductions of viable spores after one week at 30 °C and 4 °C. Spores were not detected for three weeks at 4 °C in cheese slurry made with 1.3% salt, or during week 2 with 2% salt. Gas production was observed after one week at 30 °C only in the control slurry made with 1.3% salt. In slurry made with the protective strain, the reduction in C. tyrobutyricum count was 0.6 log10 in the second week at 4 °C with both salt concentration. At 4 °C, nisin production started in week 2 and reached 97 µg/g after four weeks. Metabarcoding analysis targeting the sequencing of 16S rRNA revealed that the genus Lactococcus dominated for four weeks at 4 °C. In cheese slurry made with 2% salt, the relative abundance of the genus Clostridium decreased significantly in the presence of nisin or the protective strain. The results indicated that both strategies are able to control the growth of Clostridium development in Cheddar cheese slurries.


2017 ◽  
Vol 12 (5) ◽  
pp. 318-324
Author(s):  
Shaimaa Mohamed Hamdy ◽  
Hany Shaaban Mahmoud ◽  
Khaled Abdel-Hakam Abbas
Keyword(s):  

2000 ◽  
Vol 66 (11) ◽  
pp. 4890-4896 ◽  
Author(s):  
Ciara E. O'Reilly ◽  
Paula M. O'Connor ◽  
Alan L. Kelly ◽  
Thomas P. Beresford ◽  
Patrick M. Murphy

ABSTRACT The objective of this study was to determine the effect of high pressure (HP) on the inactivation of microbial contaminants in Cheddar cheese (Escherichia coli K-12, Staphylococcus aureus ATCC 6538, and Penicillium roqueforti IMI 297987). Initially, cheese slurries inoculated with E. coli, S. aureus, and P. roqueforti were used as a convenient means to define the effects of a range of pressures and temperatures on the viability of these microorganisms. Cheese slurries were subjected to pressures of 50 to 800 MPa for 20 min at temperatures of 10, 20, and 30°C. At 400 MPa, the viability ofP. roqueforti in cheese slurry decreased by >2-log-unit cycles at 10°C and by 6-log-unit cycles at temperatures of 20 and 30°C. S. aureus and E. coli were not detected after HP treatments in cheese slurry of >600 MPa at 20°C and >400 MPa at 30°C, respectively. In addition to cell death, the presence of sublethally injured cells in HP-treated slurries was demonstrated by differential plating using nonselective agar incorporating salt or glucose. Kinetic experiments of HP inactivation demonstrated that increasing the pressure from 300 to 400 MPa resulted in a higher degree of inactivation than increasing the pressurization time from 0 to 60 min, indicating a greater antimicrobial impact of pressure. Selected conditions were subsequently tested on Cheddar cheese by adding the isolates to cheese milk and pressure treating the resultant cheeses at 100 to 500 MPa for 20 min at 20°C. The relative sensitivities of the isolates to HP in Cheddar cheese were similar to those observed in the cheese slurry, i.e., P. roqueforti was more sensitive thanE. coli, which was more sensitive than S. aureus. The organisms were more sensitive to pressure in cheese than slurry, especially with E. coli. On comparison of the sensitivities of the microorganisms in a pH 5.3 phosphate buffer, cheese slurry, and Cheddar cheese, greatest sensitivity to HP was shown in the pH 5.3 phosphate buffer by S. aureus and P. roqueforti while greatest sensitivity to HP by E. coli was exhibited in Cheddar cheese. Therefore, the medium in which the microorganisms are treated is an important determinant of the level of inactivation observed.


2004 ◽  
Vol 84 (6) ◽  
pp. 527-538 ◽  
Author(s):  
Vivek K. Upadhyay ◽  
Maria J. Sousa ◽  
Peter Ravn ◽  
Hans Israelsen ◽  
Alan L. Kelly ◽  
...  
Keyword(s):  

LWT ◽  
2021 ◽  
pp. 110866
Author(s):  
Wanshuang Yang ◽  
Xinyue Hao ◽  
Xiuxiu Zhang ◽  
Gengxu Zhang ◽  
Xiaodong Li ◽  
...  

1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2015 ◽  
Vol 98 (5) ◽  
pp. 2982-2991 ◽  
Author(s):  
Yue Zhang ◽  
Rachel Campbell ◽  
MaryAnne Drake ◽  
Qixin Zhong

Sign in / Sign up

Export Citation Format

Share Document