Advanced Neuro-Optometric Diagnostic Tests for Mild Traumatic Brain Injury/Concussion: A Narrative Review, Proposed Techniques and Protocols

A range of visual deficits and related visual symptoms are common in those afflicted with mild traumatic brain injury (mTBI/concussion). Several basic neuro-optometric, diagnostic test protocols have been proposed over the past decade. However, none have specifically addressed and focused upon an advanced level of care. Thus, a comprehensive set of advanced, diagnostic vision tests of a sensory and motor nature is proposed, with all having a clinical and scientific rationale. These tests have been used by the authors for many years, with good success and providing important clinical insights into this population.

2018 ◽  
pp. 157-169

Vision problems are common in individuals with mild traumatic brain injury (mTBI)/concussion. However, a global conceptualization of the diagnostic process remains incomplete and practitioner dependent. Thus, a comprehensive diagnostic test battery is proposed to assist in the management of these patients. This battery includes a range of basic clinical tests of a sensory and motor nature, with all having a clinical and scientific rationale. These tests have been used by the authors for many years, with good success, and furthermore they have been found to be clinically useful and insightful.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kumar Abhiram Jha ◽  
Mickey Pentecost ◽  
Raji Lenin ◽  
Jordy Gentry ◽  
Lada Klaic ◽  
...  

Abstract Background Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation. Methods About 12-week-old C57Bl/6 mice were subjected to 50-psi air pulse on the left side of the head overlying the forebrain resulting in an mTBI. Age-matched sham blast mice served as control. About 1 μl of ASC-CCM (siControl-ASC-CCM) or TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) was delivered intravitreally into both eyes. One month following injection, the ocular function was assessed followed by molecular and immunohistological analysis. In vitro, mouse microglial cells were used to evaluate the anti-inflammatory effect of ASC-CCM. Efficacy of ASC-CCM in normalizing retinal vascular permeability was assessed using trans-endothelial resistance (TER) and VE-cadherin expression in the presence of TNFα (1 ng/ml). Results We show that intravitreal injection of ASC-CCM (siControl-ASC-CCM) but not the TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) mitigates the loss of visual acuity and contrast sensitivity, retinal expression of genes associated with microglial and endothelial activation, and retinal GFAP immunoreactivity at 4 weeks after blast injury. In vitro, siControl-ASC-CCM but not the siTSG-6-ASC-CCM not only suppressed microglial activation and STAT3 phosphorylation but also protected against TNFα-induced endothelial permeability as measured by transendothelial electrical resistance and decreased STAT3 phosphorylation. Conclusions Our findings suggest that ASCs respond to an inflammatory milieu by secreting higher levels of TSG-6 that mediates the resolution of the inflammatory cascade on multiple cell types and correlates with the therapeutic potency of the ASC-CCM. These results expand our understanding of innate mesenchymal cell function and confirm the importance of considering methods to increase the production of key analytes such as TSG-6 if mesenchymal stem cell secretome-derived biologics are to be developed as a treatment solution against the traumatic effects of blast injuries and other neurovascular inflammatory conditions of the retina.


2010 ◽  
Vol 29 (5) ◽  
pp. E1 ◽  
Author(s):  
Stefano Signoretti ◽  
Roberto Vagnozzi ◽  
Barbara Tavazzi ◽  
Giuseppe Lazzarino

Although numerous studies have been carried out to investigate the pathophysiology of mild traumatic brain injury (mTBI), there are still no standard criteria for the diagnosis and treatment of this peculiar condition. The dominant theory that diffuse axonal injury is the main neuropathological process behind mTBI is being revealed as weak at best or inconclusive, given the current literature and the fact that neuronal injury inherent to mTBI improves, with few lasting clinical sequelae in the vast majority of patients. Clinical and experimental evidence suggests that such a course, rather than being due to cell death, is based on temporal neuronal dysfunction, the inevitable consequence of complex biochemical and neurochemical cascade mechanisms directly and immediately triggered by the traumatic insult. This report is an attempt to summarize data from a long series of experiments conducted in the authors' laboratories and published during the past 12 years, together with an extensive analysis of the available literature, focused on understanding the biochemical damage produced by an mTBI. The overall clinical implications, as well as the metabolic nature of the post-mTBI brain vulnerability, are discussed. Finally, the application of proton MR spectroscopy as a possible tool to monitor the full recovery of brain metabolic functions is emphasized.


2019 ◽  
pp. 187-193

Detection and diagnosis of concussion/mild traumatic brain injury (C/mTBI) has a multitude of general vocational and avocational, as well as public health and educational, implications. A relatively short, focused, updated, highyield set of subjective and objective clinical vision tests are proposed that we and others have found to be assistive in the process. These vision tests are of a sensory, motor, and/or perceptual nature, many of which are relatively easy to implement in the standard, clinical environment.


2019 ◽  
Vol 28 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jessica Brown ◽  
Katy O'Brien ◽  
Kelly Knollman-Porter ◽  
Tracey Wallace

Purpose The Centers for Disease Control and Prevention (CDC) recently released guidelines for rehabilitation professionals regarding the care of children with mild traumatic brain injury (mTBI). Given that mTBI impacts millions of children each year and can be particularly detrimental to children in middle and high school age groups, access to universal recommendations for management of postinjury symptoms is ideal. Method This viewpoint article examines the CDC guidelines and applies these recommendations directly to speech-language pathology practices. In particular, education, assessment, treatment, team management, and ongoing monitoring are discussed. In addition, suggested timelines regarding implementation of services by speech-language pathologists (SLPs) are provided. Specific focus is placed on adolescents (i.e., middle and high school–age children). Results SLPs are critical members of the rehabilitation team working with children with mTBI and should be involved in education, symptom monitoring, and assessment early in the recovery process. SLPs can also provide unique insight into the cognitive and linguistic challenges of these students and can serve to bridge the gap among rehabilitation and school-based professionals, the adolescent with brain injury, and their parents. Conclusion The guidelines provided by the CDC, along with evidence from the field of speech pathology, can guide SLPs to advocate for involvement in the care of adolescents with mTBI. More research is needed to enhance the evidence base for direct assessment and treatment with this population; however, SLPs can use their extensive knowledge and experience working with individuals with traumatic brain injury as a starting point for post-mTBI care.


Author(s):  
Christine Parrish ◽  
Carole Roth ◽  
Brooke Roberts ◽  
Gail Davie

Abstract Background: Mild traumatic brain injury (mTBI) is recognized as the signature injury of the current conflicts in Iraq and Afghanistan, yet there remains limited understanding of the persisting cognitive deficits of mTBI sustained in combat. Speech-language pathologists (SLPs) have traditionally been responsible for evaluating and treating the cognitive-communication disorders following severe brain injuries. The evaluation instruments historically used are insensitive to the subtle deficits found in individuals with mTBI. Objectives: Based on the limited literature and clinical evidence describing traditional and current tests for measuring cognitive-communication deficits (CCD) of TBI, the strengths and weaknesses of the instruments are discussed relative to their use with mTBI. It is necessary to understand the nature and severity of CCD associated with mTBI for treatment planning and goal setting. Yet, the complexity of mTBI sustained in combat, which often co-occurs with PTSD and other psychological health and physiological issues, creates a clinical challenge for speech-language pathologists worldwide. The purpose of the paper is to explore methods for substantiating the nature and severity of CCD described by service members returning from combat. Methods: To better understand the nature of the functional cognitive-communication deficits described by service members returning from combat, a patient questionnaire and a test protocol were designed and administered to over 200 patients. Preliminary impressions are described addressing the nature of the deficits and the challenges faced in differentiating the etiologies of the CCD. Conclusions: Speech-language pathologists are challenged with evaluating, diagnosing, and treating the cognitive-communication deficits of mTBI resulting from combat-related injuries. Assessments that are sensitive to the functional deficits of mTBI are recommended. An interdisciplinary rehabilitation model is essential for differentially diagnosing the consequences of mTBI, PTSD, and other psychological and physical health concerns.


Sign in / Sign up

Export Citation Format

Share Document