An image-guided, noninvasive method of cannulation of the foramen ovale for awake, percutaneous radiofrequency rhizotomy

2009 ◽  
Vol 111 (6) ◽  
pp. 1223-1225 ◽  
Author(s):  
Tomasz Mandat ◽  
Boguslaw Brozyna ◽  
Grzegorz Krzymanski ◽  
Jan K. Podgorski

The authors describe a simple and low-cost technique for image-guided cannulation of the foramen ovale during treatment of medically refractory trigeminal neuralgia using percutaneous radiofrequency rhizotomy. Computed tomography-guided neuronavigation and the noninvasive ear, nose, and throat Small Active Frame system were applied for visualization of cannulation of the foramen ovale in the awake patient. Use of invasive head-clamp fixation was unnecessary. Three patients were treated using this technique in which the foramen ovale was reached using a single tract. No adverse effects of this technique were reported. The potential benefits and disadvantages of this method are presented.

2011 ◽  
Vol 70 (suppl_2) ◽  
pp. ons177-ons180 ◽  
Author(s):  
Bradley N. Bohnstedt ◽  
R. Shane Tubbs ◽  
Aaron A. Cohen-Gadol

ABSTRACT BACKGROUND: We describe the use of an intraoperative CT scan obtained using the Medtronic O-arm (Littleton, Massachusetts) for image-guided cannulation of the foramen ovale not previously accessible with the use of fluoroscopy alone. Unlike previously described procedures, this technique does not require placement of an invasive head clamp and may be used with an awake patient. OBJECTIVE: To describe the use of intraoperative neuronavigation for accessing skull base foramina and, specifically, cannulating of the foramen ovale during percutaneous rhizotomy procedures using an intraoperative image guidance CT scanner (Medtronic O-arm, Littleton, Massachusetts). METHODS: A noninvasive Landmark Fess Strap attached to a spine reference frame was applied to the heads of 4 patients who harbored a difficult-to-access foramen ovale. An intraoperative HD3D skull base scan using a Medtronic O-arm was obtained, and Synergy Spine software was used to create 3D reconstructions of the skull base. Using image guidance, we navigated the needle to percutaneously access the foramen ovale by the use of a single tract for successful completion of balloon compression of the trigeminal nerve. RESULTS: All 4 patients (3 females and 1 male; ages 65-75) underwent the procedure with no complications. CONCLUSION: Based on our experience, neuronavigation with the use of intraoperative O-arm CT imaging is useful during these cases.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


1990 ◽  
Vol 69 (4) ◽  
pp. 1546-1548 ◽  
Author(s):  
H. Rahn ◽  
S. A. Poturalski ◽  
C. V. Paganelli

A method is presented for measuring the heart rate of avian eggs noninvasively during the last half of incubation. The technique involves briefly placing an egg in tightly sealed vessel containing an inexpensive condenser microphone. The amplified output of the microphone, termed the acoustocardiogram (ACG), is nearly sinusoidal in shape and synchronous with the electrocardiogram. The ACG can also be obtained by mounting the microphone directly on the shell with Plasticine. The method offers advantages over previously described techniques in simplicity, low cost, and noninvasiveness.


2018 ◽  
Vol 8 (4) ◽  
pp. 777-784 ◽  
Author(s):  
J. Kearns ◽  
A. Krupp ◽  
E. Diek ◽  
S. Mitchell ◽  
S. Dossi ◽  
...  

Abstract Affordable, locally managed, decentralized treatment technologies are needed to protect health in resource-poor regions where communities consume groundwater containing elevated levels of fluoride (F). Bonechar is a promising low-cost sorbent for F that can be produced using local materials and simple pyrolysis technology. However, the sorption capacity of bonechar is low relative to the quantities of F that must be removed to meet health criteria (typically several mg/L), especially at pH typical of groundwaters containing high levels of geogenic F. This necessitates large bonechar contactors and/or frequent sorbent replacement, which could be prohibitively costly in materials and labor. One strategy for improving the feasibility of bonechar water treatment is to utilize lead-lag series or staged parallel configurations of two or more contactors. This study used column testing to quantify potential benefits to bonechar use rate, replacement frequency, and long-run average F concentration in treated water of lead-lag series and staged parallel operational modes compared with single contactor mode. Lead-lag series operation exhibited the largest reduction in bonechar use rate (46% reduction over single contactor mode compared with 29% reduction for staged parallel) and lowest long-run average F levels when treating central Mexican groundwater at pH 8.2 containing 8.5 mg/L F.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau8131 ◽  
Author(s):  
Qing Zhao ◽  
Michael J. Zachman ◽  
Wajdi I. Al Sadat ◽  
Jingxu Zheng ◽  
Lena F. Kourkoutis ◽  
...  

Electrochemical cells based on aluminum (Al) are of long-standing interest because Al is earth abundant, low cost, and chemically inert. The trivalent Al3+ ions also offer among the highest volume-specific charge storage capacities (8040 mAh cm−3), approximately four times larger than achievable for Li metal anodes. Rapid and irreversible formation of a high-electrical bandgap passivating Al2O3 oxide film on Al have, to date, frustrated all efforts to create aqueous Al-based electrochemical cells with high reversibility. Here, we investigate the interphases formed on metallic Al in contact with ionic liquid (IL)–eutectic electrolytes and find that artificial solid electrolyte interphases (ASEIs) formed spontaneously on the metal permanently transform its interfacial chemistry. The resultant IL-ASEIs are further shown to enable aqueous Al electrochemical cells with unprecedented reversibility. As an illustration of the potential benefits of these interphases, we create simple Al||MnO2 aqueous cells and report that they provide high specific energy (approximately 500 Wh/kg, based on MnO2 mass in the cathode) and intrinsic safety features required for applications.


Author(s):  
Shibnath Mukherjee ◽  
Aryya Gangopadhyay ◽  
Zhiyuan Chen

While data mining has been widely acclaimed as a technology that can bring potential benefits to organizations, such efforts may be negatively impacted by the possibility of discovering sensitive patterns, particularly in patient data. In this article the authors present an approach to identify the optimal set of transactions that, if sanitized, would result in hiding sensitive patterns while reducing the accidental hiding of legitimate patterns and the damage done to the database as much as possible. Their methodology allows the user to adjust their preference on the weights assigned to benefits in terms of the number of restrictive patterns hidden, cost in terms of the number of legitimate patterns hidden, and damage to the database in terms of the difference between marginal frequencies of items for the original and sanitized databases. Most approaches in solving the given problem found in literature are all-heuristic based without formal treatment for optimality. While in a few work, ILP has been used previously as a formal optimization approach, the novelty of this method is the extremely low cost-complexity model in contrast to the others. They implement our methodology in C and C++ and ran several experiments with synthetic data generated with the IBM synthetic data generator. The experiments show excellent results when compared to those in the literature.


2017 ◽  
Vol 12 (7) ◽  
pp. 864-871
Author(s):  
Homero Gustavo Ferrari ◽  
Leonardo H.D. Messias ◽  
Ivan G.M. Reis ◽  
Claudio A. Gobatto ◽  
Filipe A.B. Sousa ◽  
...  

Background:Among other aspects, aerobic fitness is indispensable for performance in slalom canoe.Purpose:To propose the maximal-lactate steady-state (MLSS) and critical-force (CF) tests using a tethered canoe system as new strategies for aerobic evaluation in elite slalom kayakers. In addition, the relationship between the aerobic parameters from these tests and the kayakers’ performances was studied.Methods:Twelve male elite slalom kayakers from the Brazilian national team participated in this study. All tests were conducted using a tethered canoe system to obtain the force records. The CF test was applied on 4 d and analyzed by hyperbolic (CFhyper) and linear (CFlin) mathematical models. The MLSS intensity (MLSSint) was obtained by three 30-min continuous tests. The time of a simulated race was considered the performance index.Results:No difference (P < .05) between CFhyper (65.9 ± 1.6 N) and MLSSint (60.3 ± 2.5 N) was observed; however, CFlin (71.1 ± 1.7 N) was higher than MLSSint. An inverse and significant correlation was obtained between MLSSint and performance (r = –.67, P < .05).Conclusion:In summary, MLSS and CF tests on a tethered canoe system may be used for aerobic assessment of elite slalom kayakers. In addition, CFhyper may be used as an alternative low-cost and noninvasive method to estimate MLSSint, which is related with slalom kayakers’ performance.


2021 ◽  
pp. 106-115
Author(s):  
Étienne Léger ◽  
Houssem Eddine Gueziri ◽  
D. Louis Collins ◽  
Tiberiu Popa ◽  
Marta Kersten-Oertel

2018 ◽  
Author(s):  
Scott Miller

This is a study of material transfer from a consumable tool to a substrate. The major advantage of this technique is material adheres by mechanical bonding at relatively low temperature, with potential benefits of high bonding strength, low temperature and thermal effects, high tolerance to contamination, environmentally benign, and low cost of materials, tooling, and process. There is an increasing need for dissimilar material surfacing and coating applications, leading to the study of the friction surfacing process. Friction surfacing experiments were done for depositing different materials to a steel substrate. Subsequent surface roughness and material analysis was done to characterize the nature of material transfer and adhesion to the substrate. The results suggest that friction stir processing by a consumable tool is capable of producing a smooth coating with good metallurgical properties.


Author(s):  
Jitendra S. Tate ◽  
Ajit D. Kelkar ◽  
Ronnie Bolick

Braided composites have good properties in mutually orthogonal directions, more balanced properties than traditional tape laminates, and have potentially better fatigue and impact resistance due to the interlacing. Another benefit is reduced manufacturing cost by reducing part count. Because of these potential benefits braided composites are being considered for various applications ranging from primary/secondary structures for aerospace structures [1]. These material systems are gaining popularity, in particular for the small business jets, where FAA requires take off weights of 12,500 lb. or less. The new process, Vacuum Assisted Resin Transfer Molding (VARTM), is low cost, affordable and suitable for high volume manufacturing environment. Recently the aircraft industry has been successful in manufacturing wing flaps, using carbon fiber braids and epoxy resin and the VARTM process. To utilize these VARTM manufactured braided materials to the fullest advantage (and hence to avoid underutilization), it is necessary to understand their behavior under different loading and environmental conditions. This will reduce uncertainty and hence reduce the factor of safety in the design. It is well known fact that the strength of the composite structure reduces because of discontinuities and abrupt change in the cross-section. Accurate knowledge of strength and failure mechanism of notched and unnotched composites is very important for design of composite structures. This research addresses the behavior of notched braided composites under static tensile loading.


Sign in / Sign up

Export Citation Format

Share Document