scholarly journals Enhanced anticancer properties of lomustine in conjunction with docosahexaenoic acid in glioblastoma cell lines

2015 ◽  
Vol 122 (3) ◽  
pp. 547-556 ◽  
Author(s):  
Kevin A. Harvey ◽  
Zhidong Xu ◽  
M. Reza Saaddatzadeh ◽  
Haiyan Wang ◽  
Karen Pollok ◽  
...  

OBJECT Glioblastoma is a rapidly infiltrating tumor that consistently rematerializes despite various forms of aggressive treatment. Brain tumors are commonly treated with alkylating drugs, such as lomustine, which are chemotherapeutic agents. Use of these drugs, however, is associated with serious side effects. To reduce the side effects, one approach is to combine lower doses of chemotherapeutic drugs with other nontoxic anticancer agents. In this study, using glioblastoma cell lines, the authors investigated the anticancer effects of lomustine, alone and in combination with docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid normally abundant in the brain and known for its anticancer potential. METHODS Cells were cultured from 3 human-derived tumor cell lines (U87-MG, DB029, and MHBT161) and supplemented with either DHA or lomustine to determine the growth inhibitory potential using WST-1, a mitochondrial functional indicator. Human-derived cerebral cortex microvascular endothelial cells served as a normal phenotypic control. Cellular incorporation of DHA was analyzed by gas chromatography. Using flow cytometric analysis, the DHA and/or lomustine effect on induction of apoptosis and/or necrosis was quantified; subsequently, the DHA and lomustine effect on cell cycle progression was also assessed. Western blot analysis confirmed the role of downstream cellular targets. RESULTS U87-MG growth was inhibited with the supplementation of either DHA (ED50 68.3 μM) or lomustine (ED50 68.1 μM); however, growth inhibition was enhanced when U87-MG cells were administered equimolar doses of each compound, resulting in nearly total growth inhibition at 50 μM. Gas chromatography analysis of the fatty acid profile in DHA-supplemented U87-MG cells resulted in a linear dose-dependent increase in DHA incorporation (< 60 μM). The combination of DHA and lomustine potently induced U87-MG apoptosis and necrosis as indicated by flow cytometric analysis. Activation of caspase-3 and poly (ADP-ribose) polymerase (PARP) was evident in lomustine-treated U87-MG cells, although this activation did not appear to be dependent on DHA supplementation. Additionally, lomustine-treated cells' growth arrested in the G2/M cell cycle stage, regardless of the presence of DHA. Similar to the U87-MG observations, the combination of DHA and lomustine resulted in growth inhibition of 2 additional human-derived glioblastoma cell lines, DB029 and MHBT161. Importantly, in primary human-derived cerebral cortex endothelial cells, this combination was only growth inhibitory (40.8%) at the highest dose screened (100 μM), which indicates a certain degree of selectivity toward glioblastoma. CONCLUSIONS Taken together, these data suggest a potential role for a combination therapy of lomustine and DHA for the treatment of glioblastomas.

Oncology ◽  
2003 ◽  
Vol 64 (4) ◽  
pp. 459-467 ◽  
Author(s):  
Isabelle Pommepuy ◽  
Faraj Terro ◽  
Barbara Petit ◽  
Frank Trimoreau ◽  
Virginie Bellet ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3370-3370 ◽  
Author(s):  
Maria R. Ricciardi ◽  
Maria C. Scerpa ◽  
Ludovica Ciuffreda ◽  
Sabina Chiaretti ◽  
Simona Tavolaro ◽  
...  

Abstract In the MAPK module, MEK lies upstream of ERK which is found constitutively activated in a host of human tumors. We already demonstrated the growth inhibitory activity of MEK inhibitors in myeloid cells (JCI 2001, Leukemia 2005). PD0325901 is the latest small-molecule inhibitor of MEK with promising effects at lower concentrations. We tested its activity (0.1–1000 nM) in a broad spectrum of leukemia, melanoma and breast cancer cell lines evaluating changes on cell cycle distribution, apoptosis, protein and gene expression profiles, aiming at defining the molecular signature induced by this MEK inhibitor. Among hematopoietic cell lines, PD0325901 induced a marked growth inhibition in myeloid cells with constitutive ERK activation (IC50=11 and 12 nM for OCI-AML3 and OCI-AML2, respectively). Conversely, relative resistance to PD0325901-mediated growth inhibition (IC50&gt;1μM) was observed in myeloid cell lines without constitutive ERK activation (U937, KG-1) and in lymphoid cell lines (Raji, Jurkat). Among the solid tumor cell lines, the M14 melanoma was markedly sensitive to PD0325901-induced growth inhibition (IC50=24 nM), even with forced Bcl-2 expression (IC50 ranging from 64 to 200 nM in Bcl-2-overexpressing clones). Conversely, the breast cancer cell lines tested (SKBr3, BT474, MDA-MB-231 and ZR75-1) proved relatively resistant (IC50≥1 μM), regardless of the ERK phosphorylation status. In responsive cells (OCI-AML3, OCI-AML2 and M14), PD0325901 inhibited ERK phosphorylation in a dose-dependent manner, the effect was already evident at 15 min. Cell cycle distribution analysis demonstrated a dramatic dose-dependent decrease in the proliferative compartment in OCI-AML3. Subsequently (48–72 h), PD0325901 induced apoptosis in a dose- and time-dependent fashion, as demonstrated by the increase in the percentage of AnnV+ cells from 6.3%±1.1 (DMSO control) to 15.5%±3.9, 31.5%±2.8 and 45.3%±0.14 (10, 100, and 1000 nM PD0325901, respectively). Gene expression profiling was conducted using AffymetrixTM HG-U133A 2.0 GeneChip® in OCI-AML3 cells exposed to DMSO (control) or PD0325901 at 10nM. Using a p&lt;0.05 and a fold changes ≥ 2.0 cut-off, 16 genes were found to be differentially expressed (3 upregulated and 13 downregulated) after 6h of PD0325901 treatment. These effects were even more pronounced after 24h of treatment and, in addition, at this time other genes turned out to be modulated by PD0325901 treatment (a total of 37 were upregulated, 59 downregulated); PD0325901 induced transcriptional changes mostly in genes responsible for cell growth/proliferation, DNA replication and cell signalling. In conclusion, we found that PD0325901, at nanomolar concentrations, displays a promising growth-inhibitory and pro-apoptotic activity in cells with constitutive ERK activation (particularly myeloid leukemias and melanoma). We demonstrated that the expression gene profile of OCI-AML3 is profoundly altered by PD0325901 treatment, particularly reflecting changes in genes involved in the MEK-dependent regulation of cell cycle, as well as new genes potentially useful candidates for further investigation.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22125-e22125 ◽  
Author(s):  
R. Garcia-Carbonero ◽  
M. T. Agullo-Ortuño ◽  
F. Lopez-Rios ◽  
C. V. Diaz-Garcia ◽  
A. Cortijo ◽  
...  

e22125 Background: Signaling through the insulin-like growth factor 1 receptor (IGF-IR) has been implicated in the resistance to a number of clinically relevant anti-cancer agents. The aim of this study was to assess the direct anti-tumour effects of CP-751,871, alone and in combination with paclitaxel in lung and colon cancer cell lines. Methods: Four lung and four colon cancer cell line where treated with the IGF-IR inhibitor CP-751,871 and/or Paclitaxel in simultaneous or sequential treatments. Response to treatments was evaluated by WST-1 cell survival assays. Flow cytometric analysis was used to estimate the effect on the cell cycle and apoptosis. IGF-IR mRNA expression was determined by quantitative real-time PCR and relative gene expression values were calculated by the ΔΔCt method. Results: No correlation between basal IGF-IR mRNA expression and CP-751,871 response was observed in cell lines tested. Flow cytometric analysis demonstrated that CP-751,871 enhanced cell cycle arrest at the G1/G0 checkpoint with minimal effects on apoptosis. Combined simultaneous and, more strongly, sequential treatment with CP- 751,871 and Paclitaxel showed improved response in cell growth inhibition on HCC78, H1299, Colo205 and HT29 cell lines, and was statistically superior to Paclitaxel alone (p< 0.001) and CP-751,871 alone (p< 0.001). In H460, LS180 and DLD-1 cell lines, concomitant, but no sequential treatment resulted in antagonistic interactions. Conclusions: CP-751,871 showed a modest anti-tumour activity, predominantly cytostatic, against lung and colon cancer cell lines, that is not related to the mRNA expression. CP-751,871 tends to enhance the effects of paclitaxel in vitro, depending on sequence of administration and on the model system used. No significant financial relationships to disclose.


1994 ◽  
Vol 174 (2) ◽  
pp. 95-107 ◽  
Author(s):  
KIYOSHI ISHIYAMA ◽  
SHINJI SATOH ◽  
YOSHIHARU IGARASHI ◽  
HIROAKI KUMAGAI ◽  
AKITO YAHAGI ◽  
...  

2019 ◽  
Vol 13 ◽  
Author(s):  
Gabriel Alves Bonafé ◽  
Jéssica Silva dos Santos ◽  
Jussara Vaz Ziegler ◽  
Kazuo Umezawa ◽  
Marcelo Lima Ribeiro ◽  
...  

2004 ◽  
Vol 3 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Adel Kardosh ◽  
Martina Blumenthal ◽  
Wei Jun Wang ◽  
Thomas C. Chen ◽  
Axel H. Schonthal

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1303-1303
Author(s):  
Amy C Graham ◽  
Alexey Efanov ◽  
Bartlomiej P. Przychodzen ◽  
Cassandra M. Hirsch ◽  
Vera Adema ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is usually associated with reduced bone marrow (BM) capacity caused by acquired idiopathic aplastic anemia (AA). PIGA mutations lead to a partial or total deficiency of glycosylphosphatidyl-inositol (GPI) anchor proteins (AP). AA is characteristically accompanied by the presence of often tiny GPI-AP deficient clones, which in a significant proportion of patients (10-15%), irrespective of the initial success of immunosuppressive therapy, will evolve to produce manifest hemolytic PNH. Indeed in our cohort of BM failure patients (n=319), 41% of AA patients had a PNH clone present (0.02-20% of granulocytes) (AA/PNH), 14% of patients had primary PNH (primary PNH), and 8% had a history of PNH post AA (secondary PNH). To date, drug development for PNH has focused on designing supportive therapies to prevent transfusions due to hemolysis or thrombotic complications. In addition to the current FDA approved C5 inhibitor eculizumab, new, more convenient and effective complement blockers are under development. Apart from hematopoietic stem cell (HSC) transplantation, no direct strategies targeting basic pathophysiologic mechanisms of PNH have been ventured to prevent evolution of PNH clones and cure the disease. In early AA/PNH syndrome, the PIGA mutant HSCs are rare and unlikely contribute to significant blood cell production. While in later stages of manifest hemolytic PNH, hematopoiesis relies most frequently on mutant HSCs and thus elimination of these cells would result in AA. We hypothesized that if a selective inhibitor of GPI-AP-deficient [GPI-AP (-)] cells can be developed, it could be used primarily in AA/PNH patients with a small clone size. The hope would be to prevent both later expansion of GPI-AP d(-) cells and development of manifest PNH. To discover compounds acting selectively against GPI-AP (-) cells, we subjected wild type (WT) and GPI-AP (-) cell lines (K562, TF-1) to a high-throughput screen using a platform of 3000 bio-active molecules to identify hits and chemical compounds capable of selectively eliminating GPI-AP (-) cells. Our robotic screen yielded several top hits including GR -89696 fumarate, D-cycloserine and CGS-15943. Dose-response experiments confirmed CGS-15943 as a candidate growth inhibitor of GPI-AP (-) cells. CGS-15943 is an adenosine receptor antagonist and non-phosphodiesterase inhibitor which has previously been shown to inhibit cancer cell growth via PI3K/Akt pathway. Low range dose CGS-15943 (1uM) induced cell growth inhibition in K562 and TF-1 GPI-AP (-) cells by 4.7 fold and 3.2 fold, respectively. No cell growth arrest was observed in K562 WT and TF-1 WT cells, as the percentage of alive cells was >95% upon drug treatment. Mixed competition assays were conducted in vitro using equal ratios of K562 and TF-1 WT and GPI-AP (-) cells exposed to CGS-15943 (1uM). Six days after culture, flow cytometric analysis of CD59 surface expression revealed that CGS-15943 allowed for preferential survival of WT cells (84.7 % K562, 96.3% TF-1) vs. GPI-AP (-) cells (15.3% K562, 3.7% TF-1). CGS-15943 induced an increase in the % of AnnexinV+/PI- and AnnexinV+/PI+ in TF-1 GPI-AP (-) cells (12.04% and 44.82, respectively). Similar results were obtained in K562 GPI-AP (-) cells (15.84% and 21.08%). Mononuclear cells of a PNH patient were stimulated with CD3/28 beads in presence of CGS-15943. Flow cytometric analysis indicates a dose dependent growth inhibition effect on GPI-AP (-) lymphocytes after 3 days of culture. Previous reported observations from our group identified that the survival differences between GPI-AP (-) and WT cells largely depend on active PI3K signaling pathway. Our pilot investigation of CGS-15943 - indicates that CGS-15943 induces an decrease in the protein expression of the PI3K isoform - p110γ - exclusively in GPI-AP (-) cells possibly suggesting that CGS-15943 inhibits the catalytic subunit of- p110γ. In sum, we describe that the small molecule compound CGS-15943 selectively eliminates GPI-AP (-) cells in vitro, in both cell lines and in primary PNH cells most likely interfering with the PI3K/AKT survival pathway. Disclosures Maciejewski: Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ra Pharmaceuticals, Inc: Consultancy; Apellis Pharmaceuticals: Consultancy; Apellis Pharmaceuticals: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ra Pharmaceuticals, Inc: Consultancy.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770574 ◽  
Author(s):  
George A Alexiou ◽  
Diamanto Lazari ◽  
Georgios Markopoulos ◽  
Evrysthenis Vartholomatos ◽  
Entela Hodaj ◽  
...  

Glioblastoma is the most common and most malignant primary brain tumor with a median survival of 15 months. Moschamine is an indole alkaloid that has a serotoninergic and cyclooxygenase inhibitory effect. In this study, we sought to determine whether moschamine could exert cytotoxic and cytostatic effects on glioma cells in vitro. Moschamine was tested for toxicity in zebrafish. We investigated the effect of moschamine on U251MG and T98G glioblastoma cell lines. Viability and proliferation of the cells were examined with trypan blue exclusion assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the xCELLigence system. Apoptosis (annexin–propidium iodide), cell cycle, and CD24/CD44/CD56/CD15 expression were tested with flow cytometry. Treatment with moschamine significantly reduced cell viability in both cell lines tested. Induction of cell death and cell cycle arrest was confirmed with flow cytometry in both cell lines. After treatment with moschamine, there was a dose-dependent decrease in CD24 and CD44 expression, whereas there was no change in CD56 and CD15 expression in T98G cell line. The zebrafish mortality on the fifth post-fertilization day was zero even for 1 mM of moschamine concentration. The treatment of glioblastoma cell lines with moschamine may represent a novel strategy for targeting glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document