scholarly journals Complications of ventricular entry during craniotomy for brain tumor resection

2017 ◽  
Vol 127 (2) ◽  
pp. 426-432 ◽  
Author(s):  
Jessin K. John ◽  
Adam M. Robin ◽  
Aqueel H. Pabaney ◽  
Richard A. Rammo ◽  
Lonni R. Schultz ◽  
...  

OBJECTIVERecent studies have demonstrated that periventricular tumor location is associated with poorer survival and that tumor location near the ventricle limits the extent of resection. This finding may relate to the perception that ventricular entry leads to further complications and thus surgeons may choose to perform less aggressive resection in these areas. However, there is little support for this view in the literature. This study seeks to determine whether ventricular entry is associated with more complications during craniotomy for brain tumor resection.METHODSA retrospective analysis of patients who underwent craniotomy for tumor resection at Henry Ford Hospital between January 2010 and November 2012 was conducted. A total of 183 cases were reviewed with attention to operative entry into the ventricular system, postoperative use of an external ventricular drain (EVD), subdural hematoma, hydrocephalus, and symptomatic intraventricular hemorrhage (IVH).RESULTSPatients in whom the ventricles were entered had significantly higher rates of any complication (46% vs 21%). Complications included development of subdural hygroma, subdural hematoma, intraventricular hemorrhage, subgaleal collection, wound infection, urinary tract infection/deep venous thrombosis, hydrocephalus, and ventriculoperitoneal (VP) shunt placement. Specifically, these patients had significantly higher rates of EVD placement (23% vs 1%, p < 0.001), hydrocephalus (6% vs 0%, p = 0.03), IVH (14% vs 0%, p < 0.001), infection (15% vs 5%, p = 0.04), and subgaleal collection (20% vs 4%, p < 0.001). It was also observed that VP shunt placement was only seen in cases of ventricular entry (11% vs 0%, p = 0.001) with 3 of 4 of these patients having a large ventricular entry (defined here as entry greater than a pinhole [< 3 mm] entry). Furthermore, in a subset of glioblastoma patients with and without ventricular entry, Kaplan-Meier estimates for survival demonstrated a median survival time of 329 days for ventricular entry compared with 522 days for patients with no ventricular entry (HR 1.13, 95% CI 0.65–1.96; p = 0.67).CONCLUSIONSThere are more complications associated with ventricular entry during brain tumor resection than in nonviolated ventricular systems. Better strategies for management of periventricular tumor resection should be actively sought to improve resection and survival for these patients.

Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 291-292
Author(s):  
Farhan A Mirza ◽  
Catherine Y Wang ◽  
Thomas Pittman

Abstract INTRODUCTION We reviewed our practice at the University of Kentucky in order to assess the safety of admitting adult and pediatric patients to floor beds after craniotomy, exclusively for intra-axial brain tumor resection. METHODS Retrospective chart review of patients, adults and pediatric, who underwent craniotomy by a single surgeon (TP) for intra axial brain tumor resection between January 2012 and December 2015. 413 patient charts were reviewed, 16 were omitted due to incomplete records. RESULTS >421 craniotomies for intra axial brain tumor resection were performed. 397 patients underwent surgery, 35 of whom were <18 years of age.188 females and 209 males. 351 patients (331 adults, 20 pediatric) were admitted to floor beds. In this group, length of operation was <4 hours in 346 patients (99.1%) and >4 hours in only 5 patients (0.9%). 3 patients (0.8%) required transfer to ICU within 24 hours of floor admission. 55 adult patients required ICU stay for various reasons: 9 patients had pre-operative or intra operative EVD placement; 15 patients required prolonged ventilation; 1 patient had to be taken back to the operating room for hemorrhage evacuation; 5 had intraventricular tumors and were planned ICU admissions; 26 patients were admitted pre-operatively to an ICU bed on a non neurosurgical service and were returning to their assigned beds. In the pediatric population, 15 patients required ICU stay: 8 were for EVD management and 7 for prolonged operation or frequent neurological evaluations. In this group, the length of operation was <4 hours in 40 patients(57.1%) and >4 hours in 30 patients (42.9%). CONCLUSION Admitting adult and pediatric patients to floor beds after craniotomy for intra-axial brain tumor resection is safe. There are some conditions that mandate ICU admission: these include prolonged mechanical ventilation and the presence of an external ventricular drain.


2002 ◽  
Vol 97 (3) ◽  
pp. 709-713 ◽  
Author(s):  
Gerald A. Grant ◽  
Donald Farrell ◽  
Daniel L. Silbergeld

✓ The neurosurgical management of intrinsic brain tumors and brain metastases mandates maximum resection with preservation of functional cortex. There have been previous reports on the use of cortical somatosensory evoked potentials (SSEPs) for localization of functional cortex prior to resection. The identification of rolandic cortex with the use of intraoperative SSEP monitoring enables the neurosurgeon to tailor the surgery to achieve a greater extent of resection while minimizing the risk of morbidity. The use of continuous SSEP monitoring during resection to provide an ongoing functional assessment of somatosensory cortex has not been reported. This powerful technique is illustrated using four case examples.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huan Wee Chan ◽  
Christopher Uff ◽  
Aabir Chakraborty ◽  
Neil Dorward ◽  
Jeffrey Colin Bamber

BackgroundThe clinical outcomes for brain tumor resection have been shown to be significantly improved with increased extent of resection. To achieve this, neurosurgeons employ different intra-operative tools to improve the extent of resection of brain tumors, including ultrasound, CT, and MRI. Young’s modulus (YM) of brain tumors have been shown to be different from normal brain but the accuracy of SWE in assisting brain tumor resection has not been reported.AimsTo determine the accuracy of SWE in detecting brain tumor residual using post-operative MRI scan as “gold standard”.MethodsThirty-four patients (aged 1–62 years, M:F = 15:20) with brain tumors were recruited into the study. The intraoperative SWE scans were performed using Aixplorer® (SuperSonic Imagine, France) using a sector transducer (SE12-3) and a linear transducer (SL15-4) with a bandwidth of 3 to 12 MHz and 4 to 15 MHz, respectively, using the SWE mode. The scans were performed prior, during and after brain tumor resection. The presence of residual tumor was determined by the surgeon, ultrasound (US) B-mode and SWE. This was compared with the presence of residual tumor on post-operative MRI scan.ResultsThe YM of the brain tumors correlated significantly with surgeons’ findings (ρ = 0.845, p &lt; 0.001). The sensitivities of residual tumor detection by the surgeon, US B-mode and SWE were 36%, 73%, and 94%, respectively, while their specificities were 100%, 63%, and 77%, respectively. There was no significant difference between detection of residual tumor by SWE, US B-mode, and MRI. SWE and MRI were significantly better than the surgeon’s detection of residual tumor (p = 0.001 and p &lt; 0.001, respectively).ConclusionsSWE had a higher sensitivity in detecting residual tumor than the surgeons (94% vs. 36%). However, the surgeons had a higher specificity than SWE (100% vs. 77%). Therefore, using SWE in combination with surgeon’s opinion may optimize the detection of residual tumor, and hence improve the extent of brain tumor resection.


2021 ◽  
Vol 163 (5) ◽  
pp. 1257-1267 ◽  
Author(s):  
Anne-Laure Lemaitre ◽  
Guillaume Herbet ◽  
Hugues Duffau ◽  
Gilles Lafargue

Author(s):  
Hamed Azarnoush ◽  
Gmaan Alzhrani ◽  
Alexander Winkler-Schwartz ◽  
Fahad Alotaibi ◽  
Nicholas Gelinas-Phaneuf ◽  
...  

Author(s):  
Shaun E. Gruenbaum ◽  
Christian S. Guay ◽  
Benjamin F. Gruenbaum ◽  
Aidos Konkayev ◽  
Andrea Falegnami ◽  
...  

2021 ◽  
Author(s):  
Xiu-Heng Zhang ◽  
Heng Zhang ◽  
Zhen Li ◽  
Gui-Bin Bian

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips is not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three Fiber Bragg Grating Sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in-vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0-4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.


Sign in / Sign up

Export Citation Format

Share Document