scholarly journals Biomechanical effects of a novel posteriorly placed sacroiliac joint fusion device integrated with traditional lumbopelvic long-construct instrumentation

2021 ◽  
pp. 1-10
Author(s):  
Bernardo de Andrada Pereira ◽  
Jennifer N. Lehrman ◽  
Anna G. U. Sawa ◽  
Derek P. Lindsey ◽  
Scott A. Yerby ◽  
...  

OBJECTIVE S2-alar-iliac (S2AI) screw fixation effectively ensures stability and enhances fusion in long-segment constructs. Nevertheless, pelvic fixation is associated with a high rate of mechanical failure. Because of the transarticular nature of the S2AI screw, adding a second point of fixation may provide additional stability and attenuate strains. The objective of the study was to evaluate changes in stability and strain with the integration of a sacroiliac (SI) joint fusion device, implanted through a novel posterior SI approach, supplemental to posterior long-segment fusion. METHODS L1-pelvis human cadaveric specimens underwent pure moment (7.5 Nm) and compression (400 N) tests in the following conditions: 1) intact, 2) L2–S1 pedicle screw and rod fixation with L5–S1 interbody fusion, 3) added S2AI screws, and 4) added bilateral SI joint fixation (SIJF). The range of motion (ROM), rod strain, and screw bending moments (S1 and S2AI) were analyzed. RESULTS S2AI fixation decreased L2–S1 ROM in flexion-extension (p ≤ 0.04), L5–S1 ROM in flexion-extension and compression (p ≤ 0.004), and SI joint ROM during flexion-extension and lateral bending (p ≤ 0.03) compared with S1 fixation. SI joint ROM was significantly less with SIJF in place than with the intact joint, S1, and S2AI fixation in flexion-extension and lateral bending (p ≤ 0.01). The S1 screw bending moment decreased following S2AI fixation by as much as 78% in extension, but with statistical significance only in right axial rotation (p = 0.03). Extending fixation to S2AI significantly increased the rod strain at L5–S1 during flexion, axial rotation, and compression (p ≤ 0.048). SIJF was associated with a slight increase in rod strain versus S2AI fixation alone at L5–S1 during left lateral bending (p = 0.048). Compared with the S1 condition, fixation to S2AI increased the mean rod strain at L5–S1 during compression (p = 0.048). The rod strain at L5–S1 was not statistically different with SIJF compared with S2AI fixation (p ≥ 0.12). CONCLUSIONS Constructs ending with an S2AI screw versus an S1 screw tended to be more stable, with reduced SI joint motion. S2AI fixation decreased the S1 screw bending moments compared with fixation ending at S1. These benefits were paired with increased rod strain at L5–S1. Supplementation of S2AI fixation with SIJF implants provided further reductions (approximately 30%) in the sagittal plane and lateral bending SI joint motion compared with fixation ending at the S2AI position. This stability was not paired with significant changes in rod or screw strains.

2010 ◽  
Vol 12 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Hakan Bozkuş ◽  
Mehmet Şenoğlu ◽  
Seungwon Baek ◽  
Anna G. U. Sawa ◽  
Ali Fahir Özer ◽  
...  

Object It is unclear how the biomechanics of dynamic posterior lumbar stabilization systems and traditional rigid pedicle screw-rod systems differ. This study examined the biomechanical response of a hinged-dynamic pedicle screw compared with a standard rigid screw used in a 1-level pedicle screw-rod construct. Methods Unembalmed human cadaveric L3–S1 segments were tested intact, after L4–5 discectomy, after rigid pedicle screw-rod fixation, and after dynamic pedicle screw-rod fixation. Specimens were loaded using pure moments to induce flexion, extension, lateral bending, and axial rotation while recording motion optoelectronically. Specimens were then loaded in physiological flexion-extension while applying 400 N of compression. Moment and force across instrumentation were recorded from pairs of strain gauges mounted on the interconnecting rods. Results The hinged-dynamic screws allowed an average of 160% greater range of motion during flexion, extension, lateral bending, and axial rotation than standard rigid screws (p < 0.03) but 30% less motion than normal. When using standard screws, bending moments and axial loads on the rods were greater than the bending moments and axial loads on the rods when using dynamic screws during most loading modes (p < 0.05). The axis of rotation shifted significantly posteriorly more than 10 mm from its normal position with both devices. Conclusions In a 1-level pedicle screw-rod construct, hinged-dynamic screws allowed a quantity of motion that was substantially closer to normal motion than that allowed by rigid pedicle screws. Both systems altered kinematics similarly. Less load was borne by the hinged screw construct, indicating that the hinged-dynamic screws allow less stress shielding than standard rigid screws.


2014 ◽  
Vol 20 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Sabrina A. Gonzalez-Blohm ◽  
James J. Doulgeris ◽  
Kamran Aghayev ◽  
William E. Lee ◽  
Andrey Volkov ◽  
...  

Object In this paper the authors evaluate through in vitro biomechanical testing the performance of an interspinous fusion device as a stand-alone device, after lumbar decompression surgery, and as supplemental fixation to expandable cages in a posterior lumbar interbody fusion (PLIF) construct. Methods Nine L3–4 human cadaveric spines were biomechanically tested under the following conditions: 1) intact/control; 2) L3–4 left hemilaminotomy with partial discectomy (injury); 3) interspinous spacer (ISS); 4) bilateral pedicle screw system (BPSS); 5) bilateral hemilaminectomy, discectomy, and expandable posterior interbody cages with ISS (PLIF-ISS); and 6) PLIF-BPSS. Each test consisted of 100 N of axial preload with ± 7.5 Nm of torque in flexion-extension, right/left lateral bending, and right/left axial rotation. Significant changes in range of motion (ROM), neutral zone stiffness (NZS), elastic zone stiffness (EZS), and energy loss (EL) were explored among conditions using nonparametric Friedman test and Wilcoxon signed-rank comparisons (p ≤ 0.05). Results The injury increased ROM in flexion (p = 0.01), left bending (p = 0.03), and right/left rotation (p < 0.01) and also decreased NZS in flexion (p = 0.01) and extension (p < 0.01). Both the ISS and BPSS reduced flexion-extension ROM and increased flexion-extension stiffness (NZS and EZS) with respect to the injury and intact conditions (p < 0.05), but the ISS condition provided greater resistance than BPSS in extension for ROM, NZS, and EZS (p < 0.01). The BPSS increased the rigidity (ROM, NZS, and EZS) of the intact model in lateral bending and axial rotation (p ≤ 0.01), except in EZS for left rotation (p = 0.23, Friedman test). The incorporation of posterior cages marginally increased (p = 0.05) the EZS of the BPSS construct in flexion but these interbody devices provided significant stability to the ISS construct in lateral bending and axial rotation for ROM (p = 0.02), in lateral bending for NZS (p = 0.02), and in flexion/axial rotation for EZS (p ≤ 0.03); however, both PLIF constructs demonstrated equivalent ROM and stiffness (p ≥ 0.16), except in lateral bending where the PLIF-BPSS was more stable (p = 0.02). In terms of EL, the injury increased EL in flexion-extension (p = 0.02), the ISS increased EL for lateral bending and axial rotation (p ≤ 0.03), and the BPSS decreased EL in lateral bending (p = 0.02), with respect to the intact condition. The PLIF-ISS decreased lateral bending EL with respect to the ISS condition (p = 0.02), but not enough to be smaller or, at least, equivalent, to that of the PLIF-BPSS construct (p = 0.02). Conclusions The ISS may be a suitable device to provide immediate flexion-extension balance after a unilateral laminotomy, but the BPSS provides greater immediate stability in lateral bending and axial rotation motions. Both PLIF constructs performed equivalently in flexion-extension and axial rotation, but the PLIF-BPSS construct is more resistant to lateral bending motions. Further biomechanical and clinical evidence is required to strongly support the recommendation of a stand-alone interspinous fusion device or as supplemental fixation to expandable posterior interbody cages.


2018 ◽  
Vol 28 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Derek P. Lindsey ◽  
Robin Parrish ◽  
Mukund Gundanna ◽  
Jeremi Leasure ◽  
Scott A. Yerby ◽  
...  

OBJECTIVEBilateral symptoms have been reported in 8%–35% of patients with sacroiliac (SI) joint dysfunction. Stabilization of a single SI joint may significantly alter the stresses on the contralateral SI joint. If the contralateral SI joint stresses are significantly increased, degeneration may occur; alternatively, if the stresses are significantly reduced, bilateral stabilization may be unnecessary for patients with bilateral symptoms. The biomechanical effects of 1) unilateral stabilization on the contralateral SI joint and 2) bilateral stabilization on both SI joints are currently unknown. The objectives of this study were to characterize bilateral SI joint range of motion (ROM) and evaluate and compare the biomechanical effects of unilateral and bilateral implant placement for SI joint fusion.METHODSA lumbopelvic model (L5–pelvis) was used to test the ROM of both SI joints in 8 cadavers. A single-leg stance setup was used to load the lumbar spine and measure the ROM of each SI joint in flexion-extension, lateral bending, and axial rotation. Both joints were tested 1) while intact, 2) after unilateral stabilization, and 3) after bilateral stabilization. Stabilization consisted of lateral transiliac placement of 3 triangular titanium plasma-sprayed (TPS) implants.RESULTSIntact testing showed that during single-leg stance the contralateral SI joint had less ROM in flexion-extension (27%), lateral bending (32%), and axial rotation (69%) than the loaded joint. Unilateral stabilization resulted in significant reduction of flexion-extension ROM (46%) on the treated side; no significant ROM changes were observed for the nontreated side. Bilateral stabilization resulted in significant reduction of flexion-extension ROM of the primary (45%) and secondary (75%) SI joints.CONCLUSIONSThis study demonstrated that during single-leg loading the ROMs for the stance (loaded) and swing (unloaded) SI joints are significantly different. Unilateral stabilization for SI joint dysfunction significantly reduces the ROM of the treated side, but does not significantly reduce the ROM of the nontreated contralateral SI joint. Bilateral stabilization is necessary to significantly reduce the ROM for both SI joints.


2017 ◽  
Vol 59 (3) ◽  
pp. 327-335 ◽  
Author(s):  
David Volkheimer ◽  
Fabio Galbusera ◽  
Christian Liebsch ◽  
Sabine Schlegel ◽  
Friederike Rohlmann ◽  
...  

Background Several in vitro studies investigated how degeneration affects spinal motion. However, no consensus has emerged from these studies. Purpose To investigate how degeneration grading systems influence the kinematic output of spinal specimens. Material and Methods Flexibility testing was performed with ten human T12-S1 specimens. Degeneration was graded using two different classifications, one based on X-ray and the other one on magnetic resonance imaging (MRI). Intersegmental rotation (expressed by range of motion [ROM] and neutral zone [NZ]) was determined in all principal motion directions. Further, shear translation was measured during flexion/extension motion. Results The X-ray grading system yielded systematically lesser degeneration. In flexion/extension, only small differences in ROM and NZ were found between moderately degenerated motion segments, with only NZ for the MRI grading reaching statistical significance. In axial rotation, a significant increase in NZ for moderately degenerated segments was found for both grading systems, whereas the difference in ROM was significant only for the MRI scheme. Generally, the relative increases were more pronounced for the MRI classification compared to the X-ray grading scheme. In lateral bending, only relatively small differences between the degeneration groups were found. When evaluating shear translations, a non-significant increase was found for moderately degenerated segments. Motion segment segments tended to regain stability as degeneration progressed without reaching the level of statistical significance. Conclusion We found a fair agreement between the grading schemes which, nonetheless, yielded similar degeneration-related effects on intersegmental kinematics. However, as the trends were more pronounced using the Pfirrmann classification, this grading scheme appears superior for degeneration assessment.


2021 ◽  
pp. 1-7
Author(s):  
Piyanat Wangsawatwong ◽  
Anna G. U. Sawa ◽  
Bernardo de Andrada Pereira ◽  
Jennifer N. Lehrman ◽  
Luke K. O’Neill ◽  
...  

OBJECTIVE Cortical screw–rod (CSR) fixation has emerged as an alternative to the traditional pedicle screw–rod (PSR) fixation for posterior lumbar fixation. Previous studies have concluded that CSR provides the same stability in cadaveric specimens as PSR and is comparable in clinical outcomes. However, recent clinical studies reported a lower incidence of radiographic and symptomatic adjacent-segment degeneration with CSR. No biomechanical study to date has focused on how the adjacent-segment mobility of these two constructs compares. This study aimed to investigate adjacent-segment mobility of CSR and PSR fixation, with and without interbody support (lateral lumbar interbody fusion [LLIF] or transforaminal lumbar interbody fusion [TLIF]). METHODS A retroactive analysis was done using normalized range of motion (ROM) data at levels adjacent to single-level (L3–4) bilateral screw–rod fixation using pedicle or cortical screws, with and without LLIF or TLIF. Intact and instrumented specimens (n = 28, all L2–5) were tested using pure moment loads (7.5 Nm) in flexion, extension, lateral bending, and axial rotation. Adjacent-segment ROM data were normalized to intact ROM data. Statistical comparisons of adjacent-segment normalized ROM between two of the groups (PSR followed by PSR+TLIF [n = 7] and CSR followed by CSR+TLIF [n = 7]) were performed using 2-way ANOVA with replication. Statistical comparisons among four of the groups (PSR+TLIF [n = 7], PSR+LLIF [n = 7], CSR+TLIF [n = 7], and CSR+LLIF [n = 7]) were made using 2-way ANOVA without replication. Statistical significance was set at p < 0.05. RESULTS Proximal adjacent-segment normalized ROM was significantly larger with PSR than CSR during flexion-extension regardless of TLIF (p = 0.02), or with either TLIF or LLIF (p = 0.04). During lateral bending with TLIF, the distal adjacent-segment normalized ROM was significantly larger with PSR than CSR (p < 0.001). Moreover, regardless of the types of screw-rod fixations (CSR or PSR), TLIF had a significantly larger normalized ROM than LLIF in all directions at both proximal and distal adjacent segments (p ≤ 0.04). CONCLUSIONS The use of PSR versus CSR during single-level lumbar fusion can significantly affect mobility at the adjacent segment, regardless of the presence of TLIF or with either TLIF or LLIF. Moreover, the type of interbody support also had a significant effect on adjacent-segment mobility.


Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


2012 ◽  
Vol 17 (3) ◽  
pp. 232-242 ◽  
Author(s):  
Prasath Mageswaran ◽  
Fernando Techy ◽  
Robb W. Colbrunn ◽  
Tara F. Bonner ◽  
Robert F. McLain

Object The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine. Methods Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4–5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4–5 fusion with pedicle screw dynamic stabilization constructs at L3–4, with the purpose of protecting the L3–4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared. Results In flexion-extension only, the rigid instrumentation at L4–5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1–2 (45.6%) and L2–3 (23.2%) only. The placement of the dynamic construct at L3–4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4–5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4–5 affected only a subadjacent level, L5–sacrum (52.0%), while causing a reduction in motion at the operated level (L4–5, −76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12–L1 (44.9%), L1–2 (57.3%), and L5–sacrum (83.9%), while motion at the operated level (L3–4) was reduced by 76.7%. In lateral bending, instrumentation at L4–5 increased motion at only T12–L1 (22.8%). The dynamic construct at L3–4 caused an increase in motion at T12–L1 (69.9%), L1–2 (59.4%), L2–3 (44.7%), and L5–sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3–4 caused a significant increase in motion of the adjacent levels L2–3 (25.1%) and L5–sacrum (31.4%). Conclusions The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3–4) to the fusion (L4–5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.


2008 ◽  
Vol 9 (3) ◽  
pp. 296-300 ◽  
Author(s):  
Michael A. Finn ◽  
Daniel R. Fassett ◽  
Todd D. Mccall ◽  
Randy Clark ◽  
Andrew T. Dailey ◽  
...  

Object Stabilization with rigid screw/rod fixation is the treatment of choice for craniocervical disorders requiring operative stabilization. The authors compare the relative immediate stiffness for occipital plate fixation in concordance with transarticular screw fixation (TASF), C-1 lateral mass and C-2 pars screw (C1L-C2P), and C-1 lateral mass and C-2 laminar screw (C1L-C2L) constructs, with and without a cross-link. Methods Ten intact human cadaveric spines (Oc–C4) were prepared and mounted in a 7-axis spine simulator. Each specimen was precycled and then tested in the intact state for flexion/extension, lateral bending, and axial rotation. Motion was tracked using the OptoTRAK 3D tracking system. The specimens were then destabilized and instrumented with an occipital plate and TASF. The spine was tested with and without the addition of a cross-link. The C1L-C2P and C1L-C2L constructs were similarly tested. Results All constructs demonstrated a significant increase in stiffness after instrumentation. The C1L-C2P construct was equivalent to the TASF in all moments. The C1L-C2L was significantly weaker than the C1L-C2P construct in all moments and significantly weaker than the TASF in lateral bending. The addition of a cross-link made no difference in the stiffness of any construct. Conclusions All constructs provide significant immediate stability in the destabilized occipitocervical junction. Although the C1L-C2P construct performed best overall, the TASF was similar, and either one can be recommended. Decreased stiffness of the C1L-C2L construct might affect the success of clinical fusion. This construct should be reserved for cases in which anatomy precludes the use of the other two.


2018 ◽  
Vol 29 (5) ◽  
pp. 515-524
Author(s):  
Michael D. Staudt ◽  
Doron Rabin ◽  
Ali A. Baaj ◽  
Neil R. Crawford ◽  
Neil Duggal

OBJECTIVEThere are limited data regarding the implications of revision posterior surgery in the setting of previous cervical arthroplasty (CA). The purpose of this study was to analyze segmental biomechanics in human cadaveric specimens with and without CA, in the context of graded posterior resection.METHODSFourteen human cadaveric cervical spines (C3–T1 or C2–7) were divided into arthroplasty (ProDisc-C, n = 7) and control (intact disc, n = 7) groups. Both groups underwent sequential posterior element resections: unilateral foraminotomy, laminoplasty, and finally laminectomy. Specimens were studied sequentially in two different loading apparatuses during the induction of flexion-extension, lateral bending, and axial rotation.RESULTSRange of motion (ROM) after artificial disc insertion was reduced relative to that in the control group during axial rotation and lateral bending (13% and 28%, respectively; p < 0.05) but was similar during flexion and extension. With sequential resections, ROM increased by a similar magnitude following foraminotomy and laminoplasty in both groups. Laminectomy had a much greater effect: mean (aggregate) ROM during flexion-extension, lateral bending, and axial rotation was increased by a magnitude of 52% following laminectomy in the setting of CA, compared to an 8% increase without arthroplasty. In particular, laminectomy in the setting of CA introduced significant instability in flexion-extension, characterized by a 90% increase in ROM from laminoplasty to laminectomy, compared to a 16% increase in ROM from laminoplasty to laminectomy without arthroplasty (p < 0.05).CONCLUSIONSForaminotomy and laminoplasty did not result in significant instability in the setting of CA, compared to controls. Laminectomy alone, however, resulted in a significant change in biomechanics, allowing for significantly increased flexion and extension. Laminectomy alone should be used with caution in the setting of previous CA.


Sign in / Sign up

Export Citation Format

Share Document