scholarly journals Augmented reality navigation for cranial biopsy and external ventricular drain insertion

2021 ◽  
Vol 51 (2) ◽  
pp. E7
Author(s):  
Simon Skyrman ◽  
Marco Lai ◽  
Erik Edström ◽  
Gustav Burström ◽  
Petter Förander ◽  
...  

OBJECTIVE The aim of this study was to evaluate the accuracy (deviation from the target or intended path) and efficacy (insertion time) of an augmented reality surgical navigation (ARSN) system for insertion of biopsy needles and external ventricular drains (EVDs), two common neurosurgical procedures that require high precision. METHODS The hybrid operating room–based ARSN system, comprising a robotic C-arm with intraoperative cone-beam CT (CBCT) and integrated video tracking of the patient and instruments using nonobtrusive adhesive optical markers, was used. A 3D-printed skull phantom with a realistic gelatinous brain model containing air-filled ventricles and 2-mm spherical biopsy targets was obtained. After initial CBCT acquisition for target registration and planning, ARSN was used for 30 cranial biopsies and 10 EVD insertions. Needle positions were verified by CBCT. RESULTS The mean accuracy of the biopsy needle insertions (n = 30) was 0.8 mm ± 0.43 mm. The median path length was 39 mm (range 16–104 mm) and did not correlate to accuracy (p = 0.15). The median device insertion time was 149 seconds (range 87–233 seconds). The mean accuracy for the EVD insertions (n = 10) was 2.9 mm ± 0.8 mm at the tip with a 0.7° ± 0.5° angular deviation compared with the planned path, and the median insertion time was 188 seconds (range 135–400 seconds). CONCLUSIONS This study demonstrated that ARSN can be used for navigation of percutaneous cranial biopsies and EVDs with high accuracy and efficacy.

2015 ◽  
Vol 123 (1) ◽  
pp. 206-211 ◽  
Author(s):  
Leila Besharati Tabrizi ◽  
Mehran Mahvash

OBJECT An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. METHODS Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. RESULTS Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2–7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). CONCLUSIONS The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 522
Author(s):  
Henrik Frisk ◽  
Eliza Lindqvist ◽  
Oscar Persson ◽  
Juliane Weinzierl ◽  
Linda K. Bruetzel ◽  
...  

Background: To investigate the accuracy of augmented reality (AR) navigation using the Magic Leap head mounted device (HMD), pedicle screws were minimally invasively placed in four spine phantoms. Methods: AR navigation provided by a combination of a conventional navigation system integrated with the Magic Leap head mounted device (AR-HMD) was used. Forty-eight screws were planned and inserted into Th11-L4 of the phantoms using the AR-HMD and navigated instruments. Postprocedural CT scans were used to grade the technical (deviation from the plan) and clinical (Gertzbein grade) accuracy of the screws. The time for each screw placement was recorded. Results: The mean deviation between navigation plan and screw position was 1.9 ± 0.7 mm (1.9 [0.3–4.1] mm) at the entry point and 1.4 ± 0.8 mm (1.2 [0.1–3.9] mm) at the screw tip. The angular deviation was 3.0 ± 1.4° (2.7 [0.4–6.2]°) and the mean time for screw placement was 130 ± 55 s (108 [58–437] s). The clinical accuracy was 94% according to the Gertzbein grading scale. Conclusion: The combination of an AR-HMD with a conventional navigation system for accurate minimally invasive screw placement is feasible and can exploit the benefits of AR in the perspective of the surgeon with the reliability of a conventional navigation system.


2018 ◽  
Vol 15 (5) ◽  
pp. 551-556 ◽  
Author(s):  
Keisuke Maruyama ◽  
Eiju Watanabe ◽  
Taichi Kin ◽  
Kuniaki Saito ◽  
Atsushi Kumakiri ◽  
...  

Abstract BACKGROUND Wearable devices with heads-up displays or smart glasses can overlay images onto the sight of the wearer. This technology has never been applied to surgical navigation. OBJECTIVE To assess the applicability and accuracy of smart glasses for augmented reality (AR)-based neurosurgical navigation. METHODS Smart glasses were applied to AR-based neurosurgical navigation. Three-dimensional computer graphics were created based on preoperative magnetic resonance images and visualized in see-through smart glasses. Optical markers were attached to the smart glasses and the patient's head for accurate navigation. Two motion capture cameras were used for registration and continuous monitoring of the location of the smart glasses in relation to the patient's head. After the accuracy was assessed with a phantom, this technique was applied in 2 patients with brain tumors located in the brain surface. RESULTS A stereoscopic view by image overlay through the smart glasses was successful in the phantom and in both patients. Hands-free neuronavigation inside the operative field was available from any angles and distances. The targeting error in the phantom measured in 75 points ranged from 0.2 to 8.1 mm (mean 3.1 ± 1.9 mm, median 2.7 mm). The intraoperative targeting error between the visualized and real locations in the 2 patients (measured in 40 points) ranged from 0.6 to 4.9 mm (mean 2.1 ± 1.1 mm, median 1.8 mm). CONCLUSION Smart glasses enabled AR-based neurosurgical navigation in a hands-free fashion. Stereoscopic computer graphics of targeted brain tumors corresponding to the surgical field were clearly visualized during surgery.


2019 ◽  
Vol 30 (5) ◽  
pp. 585-592 ◽  
Author(s):  
Nicola Montemurro ◽  
Paolo Perrini ◽  
Vittoriano Mangini ◽  
Massimo Galli ◽  
Andrea Papini

OBJECTIVEOdontoid process fractures are very common in both young and geriatric patients. The axial trabecular architecture of the dens appears to be crucial for physiological and biomechanical function of the C1–2 joint. The aim of this study is to demonstrate the presence of a Y-shaped trabecular structure of the dens on axial CT and to describe its anatomical and biomechanical implications.METHODSFifty-four C2 odontoid processes in healthy subjects were prospectively examined for the presence of a Y-shaped trabecular structure at the odontocentral synchondrosis level with a dental cone beam CT scan. Length, width, and axial area of the odontoid process were measured in all subjects. In addition, measurements of the one-third right anterior area of the Y-shaped structure were taken.RESULTSThe Y-shaped trabecular structure was found in 79.6% of cases. Length and width of the odontoid process were 13.5 ± 0.6 mm and 11.2 ± 0.9 mm, respectively. The mean area of the odontoid process at the odontocentral synchondrosis was 93.5 ± 4.3 mm2, whereas the mean one-third right anterior area of the odontoid process at the same level was 29.3 ± 2.5 mm2. The mean area of the odontoid process and its length and width were similar in men and women (p > 0.05). No significant difference was found in the mean area of the odontoid process in people older than 65 years (94 ± 4.2 mm2) compared to people younger than 65 years (93.3 ± 4.4 mm2; p > 0.05).CONCLUSIONSThe authors identified a new anatomical entity, named the Y-shaped trabecular structure of the odontoid process, on axial CT scans. This structure appears to be the result of bone transformation induced by the elevated dynamic loading at the C1–2 level. The presence of the Y-shaped structure provides new insights into biomechanical responses of C2 under physiological loading and traumatic conditions.


Author(s):  
Valentina Pennacchietti ◽  
Katharina Stoelzel ◽  
Anna Tietze ◽  
Erwin Lankes ◽  
Andreas Schaumann ◽  
...  

Abstract Introduction Endoscopic skull base approaches are broadly used in modern neurosurgery. The support of neuronavigation can help to effectively target the lesion avoiding complications. In children, endoscopic-assisted skull base surgery in combination with navigation systems becomes even more important because of the morphological variability and rare diseases affecting the sellar and parasellar regions. This paper aims to analyze our first experience on augmented reality navigation in endoscopic skull base surgery in a pediatric case series. Patients and methods A retrospective review identified seventeen endoscopic-assisted endonasal or transoral procedures performed in an interdisciplinary setting in a period between October 2011 and May 2020. In all the cases, the surgical target was a lesion in the sellar or parasellar region. Clinical conditions, MRI appearance, intraoperative conditions, postoperative MRI, possible complications, and outcomes were analyzed. Results The mean age of our patients was 14.5 ± 2.4 years. The diagnosis varied, but craniopharyngiomas (31.2%) were mostly represented. AR navigation was experienced to be very helpful for effectively targeting the lesion and defining the intraoperative extension of the pathology. In 65% of the oncologic cases, a radical removal was proven in postoperative MRI. The mean follow-up was 89 ± 79 months. There were no deaths in our series. No long-term complications were registered; two cerebrospinal fluid (CSF) fistulas and a secondary abscess required further surgery. Conclusion The implementation of augmented reality to endoscopic-assisted neuronavigated procedures within the skull base was feasible and did provide relevant information directly in the endoscopic field of view and was experienced to be useful in the pediatric cases, where anatomical variability and rarity of the pathologies make surgery more challenging.


Author(s):  
Cristina M. Morales Mojica ◽  
Jose D. Velazco-Garcia ◽  
Eleftherios P. Pappas ◽  
Theodosios A. Birbilis ◽  
Aaron Becker ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Spille ◽  
Feilu Jin ◽  
Eleonore Behrens ◽  
Yahya Açil ◽  
Jürgen Lichtenstein ◽  
...  

Abstract Background The aim of the study is to evaluate the accuracy of a new implant navigation system on two different digital workflows. Methods A total of 18 phantom jaws consisting of hard and non-warping plastic and resembling edentulous jaws were used to stimulate a clinical circumstance. A conventional pilot-drill guide was conducted by a technician, and a master model was set by using this laboratory-produced guide. After cone beam computed tomography (CBCT) and 3D scanning of the master models, two different digital workflows (marker tray in CBCT and 3D-printed tray) were performed based on the Digital Imaging Communication in Medicine files and standard tessellation language files. Eight Straumann implants (4.1 mm × 10 mm) were placed in each model, six models for each group, resulting in 144 implant placements in total. Postoperative CBCT were taken, and deviations at the entry point and apex as well as angular deviations were measured compared to the master model. Results The mean total deviations at the implant entry point for MTC (marker tray in CBCT), 3dPT (3d-printed tray), and PDG (pilot-drill guide) were 1.024 ± 0.446 mm, 1.027 ± 0.455 mm, and 1.009 ± 0.415 mm, respectively, and the mean total deviations at the implant apex were 1.026 ± 0.383 mm, 1.116 ± 0.530 mm, and 1.068 ± 0.384 mm. The angular deviation for the MTC group was 2.22 ± 1.54°. The 3dPT group revealed an angular deviation of 1.95 ± 1.35°, whereas the PDG group showed a mean angular deviation of 2.67 ± 1.58°. Although there were no significant differences among the three groups (P > 0.05), the navigation groups showed lesser angular deviations compared to the pilot-drill-guide (PDG) group. Implants in the 3D-printed tray navigation group showed higher deviations at both entry point and apex. Conclusions The accuracy of the evaluated navigation system was similar with the accuracy of a pilot-drill guide. Accuracy of both preoperative workflows (marker tray in CBCT or 3D-printed tray) was reliable for clinical use.


2021 ◽  
Vol 10 (5) ◽  
pp. 1102
Author(s):  
Corina Marilena Cristache ◽  
Mihai Burlibasa ◽  
Ioana Tudor ◽  
Eugenia Eftimie Totu ◽  
Fabrizio Di Francesco ◽  
...  

(1) Background: Prosthetically-driven implant positioning is a prerequisite for long-term successful treatment. Transferring the planned implant position information to the clinical setting could be done using either static or dynamic guided techniques. The 3D model of the bone and surrounding structures is obtained via cone beam computed tomography (CBCT) and the patient’s oral condition can be acquired conventionally and then digitalized using a desktop scanner, partially digital workflow (PDW) or digitally with the aid of an intraoral scanner (FDW). The aim of the present randomized clinical trial (RCT) was to compare the accuracy of flapless dental implants insertion in partially edentulous patients with a static surgical template obtained through PDW and FDW. Patient outcome and time spent from data collection to template manufacturing were also compared. (2) Methods: 66 partially edentulous sites (at 49 patients) were randomly assigned to a PDW or FDW for guided implant insertion. Planned and placed implants position were compared by assessing four deviation parameters: 3D error at the entry point, 3D error at the apex, angular deviation, and vertical deviation at entry point. (3) Results: A total of 111 implants were inserted. No implant loss during osseointegration or mechanical and technical complications occurred during the first-year post-implants loading. The mean error at the entry point was 0.44 mm (FDW) and 0.85 (PDW), p ≤ 0.00; at implant apex, 1.03 (FDW) and 1.48 (PDW), p ≤ 0.00; the mean angular deviation, 2.12° (FDW) and 2.48° (PDW), p = 0.03 and the mean depth deviation, 0.45 mm (FDW) and 0.68 mm (PDW), p ≤ 0.00; (4) Conclusions: Despite the statistically significant differences between the groups, and in the limits of the present study, full digital workflow as well as partially digital workflow are predictable methods for accurate prosthetically driven guided implants insertion.


2007 ◽  
Vol 107 (1) ◽  
pp. 248 ◽  
Author(s):  
George K. C. Wong ◽  
Wayne W. S. Poon

Object The authors explored the relationship among the duration of external ventricular drainage, revision of external ventricular drains (EVDs), and cerebrospinal fluid (CSF) infection to shed light on the practice of electively revising these drains. Methods In a retrospective study of 199 patients with 269 EVDs in the intensive care unit at a major trauma center in Australasia, the authors found 21 CSF infections. Acinetobacter accounted for 10 (48%) of these infections. Whereas the duration of drainage was not an independent predictor of infection, multiple insertions of EVDs was a significant risk factor. Second and third EVDs in previously uninfected patients were more likely to become infected than first EVDs. An EVD infection was initially identified a mean of 5.5 ±0.7 days postinsertion (standard error of the mean); these data—that is, the number of days—were normally distributed. Conclusions This pattern of infection is best explained by EVD-associated CSF infections being acquired by the introduction of bacteria on insertion of the drain rather than by subsequent retrograde colonization. Elective EVD revision would be expected to increase infection rates in light of these results, and thus the practice has been abandoned by the authors' institution.


2009 ◽  
Vol 110 (6) ◽  
pp. 1283-1290 ◽  
Author(s):  
Ludvic Zrinzo ◽  
Arjen L. J. van Hulzen ◽  
Alessandra A. Gorgulho ◽  
Patricia Limousin ◽  
Michiel J. Staal ◽  
...  

Object The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. Methods The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images. Results The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01). Conclusions Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.


Sign in / Sign up

Export Citation Format

Share Document