Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex

1999 ◽  
Vol 91 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Oliver Ganslandt ◽  
Rudolf Fahlbusch ◽  
Christopher Nimsky ◽  
Helmut Kober ◽  
Martin Möller ◽  
...  

Object. The authors conducted a study to evaluate the clinical outcome in 50 patients with lesions around the motor cortex who underwent surgery in which functional neuronavigation was performed.Methods. The sensorimotor cortex was identified in all patients with the use of magnetoencephalography (MEG). The MEG-source localizations were superimposed onto a three-dimensional magnetic resonance image and the image data set was implemented into a neuronavigation system. Based on this setup, the surgeon chose the best surgical strategy. During surgery, the pre- and postcentral gyri were identified by neuronavigation and, in addition, the central sulcus was localized using intraoperative recording of somatosensory evoked potentials. In all cases MEG localizations of the sensory or motor cortex were correct. In 30% of the patients preoperative paresis improved, in 66% no additional deficits occurred, and in only 4% (two patients) deterioration of neurological function occurred. In one of these patients the deterioration was not related to the procedure.Conclusions. The method of incorporating functional data into neuronavigation systems is a promising tool that can be used in more radical surgery to lessen morbidity around eloquent brain areas.

1999 ◽  
Vol 6 (3) ◽  
pp. E5 ◽  
Author(s):  
Oliver Ganslandt ◽  
Rudolf Fahlbusch ◽  
Christopher Nimsky ◽  
Helmut Kober ◽  
Martin Möller ◽  
...  

The authors conducted a study to evaluate the clinical outcome in 50 patients with lesions around the motor cortex who underwent surgery in which functional neuronavigation was performed. The sensorimotor cortex was identified in all patients with the use of magnetoencephalography (MEG). The MEG-source localizations were superimposed onto a three-dimensional magnetic resonance image, and the image data set was then implemented into a neuronavigation system. Based on this setup, the surgeon chose the best surgical strategy. During surgery, the pre- and postcentral gyrus were identified by neuronavigation, and in addition, the central sulcus was localized using intraoperative recording of somatosensory evoked potentials. In all cases MEG localizations of the sensory or motor cortex were correct. In 30% of the patients preoperative paresis improved, in 66% no additional deficits occurred, and in only 4% (two patients) deterioration of neurological function occurred. In one of these patients the deterioration was not related to the method. The method of incorporating functional data into neuronavigation systems is a promising tool that can be used in more radical surgery to cause less morbidity around eloquent brain areas.


2005 ◽  
Vol 102 (4) ◽  
pp. 658-663 ◽  
Author(s):  
Jan Gralla ◽  
Raphael Guzman ◽  
Caspar Brekenfeld ◽  
Luca Remonda ◽  
Claus Kiefer

Object. Conventional imaging for neuronavigation is performed using high-resolution computerized tomography (CT) scanning or a T1-weighted isovoxel magnetic resonance (MR) sequence. The extension of some lesions, however, is depicted much better on T2-weighted MR images. A possible fusion process used to match low-resolution T2-weighted MR image set with a referenced CT or T1-weighted data set leads to poor resolution in the three-dimensional (3D) reconstruction and decreases accuracy, which is unacceptable for neuronavigation. The object of this work was to develop a 3D T2-weighted isovoxel sequence (3D turbo—spin echo [TSE]) for image-guided neuronavigation of the whole brain and to evaluate its clinical application. Methods. The authors performed a phantom study and a clinical trial on a newly developed T2-weighted isovoxel sequence, 3D TSE, for image-guided neuronavigation using a common 1.5-tesla MR imager (Siemens Sonata whole-body imager). The accuracy study and intraoperative image guidance were performed with the aid of the pointer-based Medtronic Stealth Station Treon. The 3D TSE data set was easily applied to the navigational setup and demonstrated a high registration accuracy during the experimental trial and during an initial prospective clinical trial in 25 patients. The sequence displayed common disposable skin fiducial markers and provided convincing delineation of lesions that appear hyperintense on T2-weighted images such as low-grade gliomas and cavernomas in its clinical application. Conclusions. Three-dimensional TSE imaging broadens the spectrum of navigational and intraoperative data sets, especially for lesions that appear hyperintense on T2-weighted images. The accuracy of its registration is very reliable and it enables high-resolution reconstruction in any orientation, maintaining the advantages of image-guided surgery.


2005 ◽  
Vol 102 (4) ◽  
pp. 664-672 ◽  
Author(s):  
Kyousuke Kamada ◽  
Tomoki Todo ◽  
Yoshitaka Masutani ◽  
Shigeki Aoki ◽  
Kenji Ino ◽  
...  

Object. The aim of this study was better preoperative planning and direct application to intraoperative procedures through accurate coregistration of diffusion-tensor (DT) imaging—based tractography results and anatomical three-dimensional magnetic resonance images and subsequent importation of the combined images to a neuronavigation system (functional neuronavigation). Methods. Six patients with brain lesions adjacent to the corticospinal tract (CST) were studied. During surgery, direct fiber stimulation was used to evoke motor responses to confirm the accuracy of CST depicted on functional neuronavigation. In three patients, stimulation of the supposed CST elicited the expected motor evoked potentials. In the other three, stimulation at the resection borders more than 1 cm away from the supposed CST showed no motor response. All patients underwent appropriate tumor resection with preservation of the CST. Conclusions. Integration of the DT imaging—based tractography information into a traditional neuronavigation system demonstrated spatial relationships between lesions and the CST, allowing for the avoidance of tract injury during lesion resection. Direct fiber stimulation was used for real-time reliable white matter mapping, which served to adjust for any discrepancy between the neuronavigation system data and potentially shifted positions of the brain structures. The combination of these techniques enabled the authors to identify accurate positions of the CST during surgery and to accomplish optimal tumor resections.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 90-92 ◽  
Author(s):  
Mark E. Linskey

✓ By definition, the term “radiosurgery” refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed “stereotactic radiotherapy.” There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image—targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS “halo effect.” It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.


1996 ◽  
Vol 85 (2) ◽  
pp. 316-322 ◽  
Author(s):  
Curtis A. Dickman ◽  
Neil R. Crawford ◽  
Christopher G. Paramore

✓ The biomechanical characteristics of four different methods of C1–2 cable fixation were studied to assess the effectiveness of each technique in restoring atlantoaxial stability. Biomechanical testing was performed on the upper cervical spines of four human cadaveric specimens. Physiological range loading was applied to the atlantoaxial specimens and three-dimensional motion was analyzed with stereophotogrammetry. The load–deformation relationships and kinematics were measured, including the stiffness, the angular ranges of motion, the linear ranges of motion, and the axes of rotation. Specimens were nondestructively tested in the intact state, after surgical destabilization, and after each of four different methods of cable fixation. Cable fixation techniques included the interspinous technique, the Brooks technique, and two variants of the Gallie technique. All specimens were tested immediately after fixation and again after the specimen was fatigued with 6000 cycles of physiological range torsional loading. All four cable fixation methods were moderately flexible immediately; the different cable fixations allowed between 5° and 40° of rotational motion and between 0.6 and 7 mm of translational motion to occur at C1–2. The Brooks and interspinous methods controlled C1–2 motion significantly better than both of the Gallie techniques. The motion allowed by one of the Gallie techniques did not differ significantly from the motion of the unfixed destabilized specimens. All cable fixation techniques loosened after cyclic loading and demonstrated significant increases in C1–2 rotational and translational motions. The bone grafts shifted during cyclic loading, which reduced the effectiveness of the fixation. The locations of the axes of rotation, which were unconstrained and mobile in the destabilized specimens, became altered with cable fixation. The C1–2 cables constrained motion by shifting the axes of rotation so that C-1 rotated around the fixed cable and graft site. After the specimen was fatigued, the axes of rotation became more widely dispersed but were usually still localized near the cable and graft site. Adequate healing requires satisfactory control of C1–2 motion. Therefore, some adjunctive fixation is advocated to supplement the control of motion after C1–2 cable fixation (that is, a cervical collar, a halo brace, or rigid internal fixation with transarticular screws).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lukman E. Mansuri ◽  
D.A. Patel

PurposeHeritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.Design/methodology/approachThe artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”FindingsThis study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.Practical implicationsThe study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.Originality/valueFor ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.


1994 ◽  
Vol 80 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Shigetaka Anegawa ◽  
Takashi Hayashi ◽  
Ryuichiro Torigoe ◽  
Katsuhiko Harada ◽  
Shun-ichi Kihara

✓ Surgical resection of 13 operatively obscure arteriovenous malformations (AVM's) was accomplished with the assistance of intraoperative angiography, which was performed stereographically to provide three-dimensional orientation and was repeated until total resection of the AVM was confirmed. All films obtained were subtracted to improve clarity. The method presented here may be useful for the resection of all types of AVM. Only two patients had residual AVM after the initial operation. No complications attributable to angiography were noted.


2004 ◽  
Vol 100 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Katsushige Watanabe ◽  
Takashi Watanabe ◽  
Akio Takahashi ◽  
Nobuhito Saito ◽  
Masafumi Hirato ◽  
...  

✓ The feasibility of high-frequency transcranial electrical stimulation (TES) through screw electrodes placed in the skull was investigated for use in intraoperative monitoring of the motor pathways in patients who are in a state of general anesthesia during cerebral and spinal operations. Motor evoked potentials (MEPs) were elicited by TES with a train of five square-wave pulses (duration 400 µsec, intensity ≤ 200 mA, frequency 500 Hz) delivered through metal screw electrodes placed in the outer table of the skull over the primary motor cortex in 42 patients. Myogenic MEPs to anodal stimulation were recorded from the abductor pollicis brevis (APB) and tibialis anterior (TA) muscles. The mean threshold stimulation intensity was 48 ± 17 mA for the APB muscles, and 112 ± 35 mA for the TA muscles. The electrodes were firmly fixed at the site and were not dislodged by surgical manipulation throughout the operation. No adverse reactions attributable to the TES were observed. Passing current through the screw electrodes stimulates the motor cortex more effectively than conventional methods of TES. The method is safe and inexpensive, and it is convenient for intraoperative monitoring of motor pathways.


2004 ◽  
Vol 101 (5) ◽  
pp. 779-786 ◽  
Author(s):  
Amami Kato ◽  
Yasunori Fujimoto ◽  
Masaaki Taniguchi ◽  
Naoya Hashimoto ◽  
Azuma Hirayama ◽  
...  

Object. Controlling hemorrhage is crucial in the safe and efficient removal of large meningiomas. Intravascular embolization is not always a satisfactory means of accomplishing this goal because of the procedure's hemostatic effect and risk of complications. The authors in this study used a volumetric thermal ablation technique incorporating radiofrequency energy, image guidance, and local temperature control to devascularize tumor tissue. Methods. Five patients with large meningiomas were treated. The target and orientation of the radiofrequency thermal ablation (RFTA) were simulated preoperatively to maximize devascularization of the lesion without thermal injury to adjacent critical structures. Image fusion, three-dimensional reconstruction, and image-guided methods provided for optimized trajectories and targets for insertion of the RFTA needle. During ablation, local temperatures of the tissue being cauterized were monitored continuously to limit the ablated lesion to within the target volume. The effects of devascularization and the softening of the tumor parenchyma facilitated lesion removal. The intracranial ablated meningioma changed into necrotic tissue and shrank within a few months. Histopathological examination of the ablated lesion revealed sharply demarcated coagulation necrosis. Conclusions. Volumetric thermal devascularization can be applied safely in the treatment of large meningiomas to facilitate surgical manipulation of the lesion as well as to reduce its size palliatively. The procedure's usefulness should be studied further in a larger number of cases with different tumor characteristics.


1994 ◽  
Vol 81 (1) ◽  
pp. 115-121 ◽  
Author(s):  
J. Stuart Crutchfield ◽  
Raymond Sawaya ◽  
Christina A. Meyers ◽  
Bartlett D. Moore

✓ Mutism is defined as a state in which a patient is conscious but unwilling or unable to speak. It has been reported to occur in association with a multitude of conditions, including trauma, epilepsy, tumors, stroke, psychoses, and brain surgery. The cases of two patients who became mute in the immediate postoperative period are presented. The first patient developed mutism following removal of a parasagittal meningioma, and the second following removal of a posterior fossa medulloblastoma. It is believed that transient injury may have occurred to the supplementary motor cortex in the first case and to the dentate nuclei in the second case. It is interesting that these two areas are connected via pathways involving the ventrolateral nucleus of the thalamus, and that lesions of this thalamic nucleus can also lead to mutism. It therefore appears plausible that interruption of these pathways may be involved in the pathogenesis of mutism. Although mutism is an infrequent complication of brain surgery, neurosurgeons should be aware that it may occur following removal of lesions in these areas and that it is generally a transient condition.


Sign in / Sign up

Export Citation Format

Share Document