High-resolution three-dimensional T2-weighted sequence for neuronavigation: a new setup and clinical trial

2005 ◽  
Vol 102 (4) ◽  
pp. 658-663 ◽  
Author(s):  
Jan Gralla ◽  
Raphael Guzman ◽  
Caspar Brekenfeld ◽  
Luca Remonda ◽  
Claus Kiefer

Object. Conventional imaging for neuronavigation is performed using high-resolution computerized tomography (CT) scanning or a T1-weighted isovoxel magnetic resonance (MR) sequence. The extension of some lesions, however, is depicted much better on T2-weighted MR images. A possible fusion process used to match low-resolution T2-weighted MR image set with a referenced CT or T1-weighted data set leads to poor resolution in the three-dimensional (3D) reconstruction and decreases accuracy, which is unacceptable for neuronavigation. The object of this work was to develop a 3D T2-weighted isovoxel sequence (3D turbo—spin echo [TSE]) for image-guided neuronavigation of the whole brain and to evaluate its clinical application. Methods. The authors performed a phantom study and a clinical trial on a newly developed T2-weighted isovoxel sequence, 3D TSE, for image-guided neuronavigation using a common 1.5-tesla MR imager (Siemens Sonata whole-body imager). The accuracy study and intraoperative image guidance were performed with the aid of the pointer-based Medtronic Stealth Station Treon. The 3D TSE data set was easily applied to the navigational setup and demonstrated a high registration accuracy during the experimental trial and during an initial prospective clinical trial in 25 patients. The sequence displayed common disposable skin fiducial markers and provided convincing delineation of lesions that appear hyperintense on T2-weighted images such as low-grade gliomas and cavernomas in its clinical application. Conclusions. Three-dimensional TSE imaging broadens the spectrum of navigational and intraoperative data sets, especially for lesions that appear hyperintense on T2-weighted images. The accuracy of its registration is very reliable and it enables high-resolution reconstruction in any orientation, maintaining the advantages of image-guided surgery.

1999 ◽  
Vol 91 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Oliver Ganslandt ◽  
Rudolf Fahlbusch ◽  
Christopher Nimsky ◽  
Helmut Kober ◽  
Martin Möller ◽  
...  

Object. The authors conducted a study to evaluate the clinical outcome in 50 patients with lesions around the motor cortex who underwent surgery in which functional neuronavigation was performed.Methods. The sensorimotor cortex was identified in all patients with the use of magnetoencephalography (MEG). The MEG-source localizations were superimposed onto a three-dimensional magnetic resonance image and the image data set was implemented into a neuronavigation system. Based on this setup, the surgeon chose the best surgical strategy. During surgery, the pre- and postcentral gyri were identified by neuronavigation and, in addition, the central sulcus was localized using intraoperative recording of somatosensory evoked potentials. In all cases MEG localizations of the sensory or motor cortex were correct. In 30% of the patients preoperative paresis improved, in 66% no additional deficits occurred, and in only 4% (two patients) deterioration of neurological function occurred. In one of these patients the deterioration was not related to the procedure.Conclusions. The method of incorporating functional data into neuronavigation systems is a promising tool that can be used in more radical surgery to lessen morbidity around eloquent brain areas.


2003 ◽  
Vol 99 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Langston T. Holly ◽  
Kevin T. Foley

✓ The authors sought to evaluate the feasibility and accuracy of three-dimensional (3D) fluoroscopic guidance for percutaneous placement of thoracic and lumbar pedicle screws in three cadaveric specimens. After attaching a percutaneous dynamic reference array to the surgical anatomy, an isocentric C-arm fluoroscope was used to obtain images of the region of interest. Light-emitting diodes attached to the C-arm unit were tracked using an electrooptical camera. The image data set was transferred to the image-guided workstation, which performed an automated registration. Using the workstation display, pedicle screw trajectories were planned. An image-guided drill guide was passed through a stab incision, and this was followed by sequential image-guided pedicle drilling, tapping, and screw placement. Pedicle screws of various diameters (range 4–6.5 mm) were placed in all pedicles greater than 4 mm in diameter. Postoperatively, thin-cut computerized tomography scans were obtained to determine the accuracy of screw placement. Eighty-nine (94.7%) of 94 percutaneous screws were placed completely within the cortical pedicle margins, including all 30 lumbar screws (100%) and 59 (92%) of 64 thoracic screws. The mean diameter of all thoracic pedicles was 6 mm (range 2.9–11 mm); the mean diameter of the five pedicles in which wall violations occurred was 4.6 mm (range 4.1–6.3 mm). Two of the violations were less than 2 mm beyond the cortex; the others were between 2 and 3 mm. Coupled with an image guidance system, 3D fluoroscopy allows highly accurate spinal navigation. Results of this study suggest that this technology will facilitate the application of minimally invasive techniques to the field of spine surgery.


2004 ◽  
Vol 101 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Andreas Stadlbauer ◽  
Ewald Moser ◽  
Stephan Gruber ◽  
Christopher Nimsky ◽  
Rudolf Fahlbusch ◽  
...  

Object. It is often difficult to delineate the extent of invasion of high- and low-grade gliomas into normal brain tissue by using conventional T1- and T2-weighted magnetic resonance (MR) imaging. Knowledge of the relationship between the tumor infiltration zone and normal brain, however, is one of the prerequisites for performing as radical a tumor resection as possible. Proton MR spectroscopy allows noninvasive measurements of the concentrations and spatial distributions of brain metabolites and, therefore, may provide biochemical information in vivo, that is useful in distinguishing pathological from normal areas of the brain. The authors have developed a method to use the properties of MR spectroscopy to investigate intraoperatively pathological changes in the spatial distribution of choline (Cho)-containing compounds, total creatine, and N-acetylaspartate (NAA) in brain tumors with the aid of frameless stereotaxy. Methods. Maps of the Cho/NAA ratio were calculated and automatic segmentation of the tumors was performed. Spectroscopic images of the segmented tumor were matched to an anatomical three-dimensional (3D) MR imaging set by applying a fully automated mutual-information algorithm. The resulting 3D MR image can be used subsequently for neurosurgical planning, transfer to a frameless stereotactic system, and display in the navigation microscope during surgery leading to 1H-MR spectroscopy-guided navigation. Conclusions. This method may allow better intraoperative identification of tumor border zones based on metabolic changes due to tumor infiltration.


2001 ◽  
Vol 94 (4) ◽  
pp. 655-659 ◽  
Author(s):  
Felix Schlachetzki ◽  
Thilo Hoelscher ◽  
Odo-Winfried Ullrich ◽  
Berthold Schalke ◽  
Ulrich Bogdahn

✓ Structural imaging of the brain, such as cerebral computerized tomography (CT) and magnetic resonance (MR) imaging, is state-of-the-art. Dynamic transcranial (dTC) ultrasonography and three-dimensional (3D) transcranial color-coded duplex (TCC) ultrasonography are complementary, noninvasive procedures with the capacity for real-time imaging, which may aid in the temporary management of space-occupying lesions. A 16-year-old woman presented with recurrent tension-type headaches. A space-occupying arachnoid cyst in the cerebral convexity was demonstrated on MR images. The patient underwent an examination for raised intracranial pressure, which was performed using a standard color-coded duplex ultrasonography system attached to a personal computer—based system for 3D data acquisition. Transcranial ultrasonography was used to identify the outer arachnoid membrane of the cyst, which undulated freely in response to rotation of the patient's head (headshake maneuver). Three-dimensional data sets were acquired and, using a multiplanar reformatting reconstruction algorithm, the authors obtained high-resolution images that corresponded to the initial MR image and a follow-up cranial CT scan. No detectable differences were observed on dTC or 3D TC ultrasonograms obtained at follow-up examinations performed 9 and 28 months later. Three-dimensional TCC and dTC ultrasonography may complement conventional diagnostic procedures such as MR and CT imaging. This report represents evidence of the high resolution and good reproducibility of 3D TC methods. Ultrasonography is a mobile and inexpensive tool and may be used to improve management and therapeutic strategies for patients with space-occupying brain lesions in selected cases.


1998 ◽  
Vol 88 (4) ◽  
pp. 777-781 ◽  
Author(s):  
Kathryn Ko

✓ Computerized tomography scanning—derived narrow band reflection holograms of patients undergoing craniofacial procedures were created to evaluate the applicability of superimposing these three-dimensional images (3-D) on the operative field during neurological surgery. These sterilized radiological holograms were positioned over the surgical site by using bone sutures as registration points between the skull and the 3-D image to serve as a visual template between the patient and surgeon. Surgeries were then performed with the surgeon looking through the radiological hologram at the patient. Holograms were accurate to within 2 mm (plus or minus) of the actual calvarial anatomy. The use of the holographic image as a visual guide during surgery eliminated intraoperative guesswork or free-handed contouring. To the author's knowledge, this is the first report of the superimposed holographic image used in situ during surgery.


2003 ◽  
Vol 99 (6) ◽  
pp. 1082-1084 ◽  
Author(s):  
Tetsuya Goto ◽  
Kazuhiro Hongo ◽  
Yukinari Kakizawa ◽  
Hisashi Muraoka ◽  
Yosuke Miyairi ◽  
...  

✓ The NeuRobot is a telecontrolled microscopic micromanipulator system designed for neurosurgical procedures. The unit houses a three-dimensional endoscope and three robot arms that the surgeon operates without direct contact with the patient. The authors have successfully performed robotics-assisted neurosurgical procedures by using the NeuRobot in a 54-year-old man who had a recurrent atypical meningioma. Following the usual preparation of craniotomy and opening of the dura mater, a portion of the tumor was removed using the NeuRobot with the aid of microscopic observation. No complication related to the use of the NeuRobot was encountered and the patient's postoperative course was uneventful. Although various kinds of robots have been developed for use in neurosurgery in recent years, a robotic telemanipulation system capable of performing several surgical tasks has not previously been introduced to clinical neurosurgery. This is the first case report in which neurosurgical manipulation by a robotics system is described.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 90-92 ◽  
Author(s):  
Mark E. Linskey

✓ By definition, the term “radiosurgery” refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed “stereotactic radiotherapy.” There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image—targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS “halo effect.” It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 37-41 ◽  
Author(s):  
William F. Regine ◽  
Roy A. Patchell ◽  
James M. Strottmann ◽  
Ali Meigooni ◽  
Michael Sanders ◽  
...  

Object. This investigation was performed to determine the tolerance and toxicities of split-course fractionated gamma knife radiosurgery (FSRS) given in combination with conventional external-beam radiation therapy (CEBRT). Methods. Eighteen patients with previously unirradiated, gliomas treated between March 1995 and January 2000 form the substrate of this report. These included 11 patients with malignant gliomas, six with low-grade gliomas, and one with a recurrent glioma. They were stratified into three groups according to tumor volume (TV). Fifteen were treated using the initial FSRS dose schedule and form the subject of this report. Group A (four patients), had TV of 5 cm3 or less (7 Gy twice pre- and twice post-CEBRT); Group B (six patients), TV greater than 5 cm3 but less than or equal to 15 cm3 (7 Gy twice pre-CEBRT and once post-CEBRT); and Group C (five patients), TV greater than 15 cm3 but less than or equal to 30 cm3 (7 Gy once pre- and once post-CEBRT). All patients received CEBRT to 59.4 Gy in 1.8-Gy fractions. Dose escalation was planned, provided the level of toxicity was acceptable. All patients were able to complete CEBRT without interruption or experiencing disease progression. Unacceptable toxicity was observed in two Grade 4/Group B patients and two Grade 4/Group C patients. Eight patients required reoperation. In three (38%) there was necrosis without evidence of tumor. Neuroimaging studies were available for evaluation in 14 patients. Two had a partial (≥ 50%) reduction in volume and nine had a minor (> 20%) reduction in size. The median follow-up period was 15 months (range 9–60 months). Six patients remained alive for 3 to 60 months. Conclusions. The imaging responses and the ability of these patients with intracranial gliomas to complete therapy without interruption or experiencing disease progression is encouraging. Excessive toxicity derived from combined FSRS and CEBRT treatment, as evaluated thus far in this study, was seen in patients with Group B and C lesions at the 7-Gy dose level. Evaluation of this novel treatment strategy with dose modification is ongoing.


2002 ◽  
Vol 97 ◽  
pp. 542-550 ◽  
Author(s):  
Marc Levivier ◽  
David Wikler ◽  
Nicolas Massager ◽  
Philippe David ◽  
Daniel Devriendt ◽  
...  

Object. The authors review their experience with the clinical development and routine use of positron emission tomography (PET) during stereotactic procedures, including the use of PET-guided gamma knife radiosurgery (GKS). Methods. Techniques have been developed for the routine use of stereotactic PET, and accumulated experience using PET-guided stereotactic procedures over the past 10 years includes more than 150 stereotactic biopsies, 43 neuronavigation procedures, and 34 cases treated with GKS. Positron emission tomography—guided GKS was performed in 24 patients with primary brain tumors (four pilocytic astrocytomas, five low-grade astrocytomas or oligodendrogliomas, seven anaplastic astrocytomas or ependymomas, five glioblastomas, and three neurocytomas), five patients with metastases (single or multiple lesions), and five patients with pituitary adenomas. Conclusions. Data obtained with PET scanning can be integrated with GKS treatment planning, enabling access to metabolic information with high spatial accuracy. Positron emission tomography data can be successfully combined with magnetic resonance imaging data to provide specific information for defining the target volume for the radiosurgical treatment in patients with recurrent brain tumors, such as glioma, metastasis, and pituitary adenoma. This approach is particularly useful for optimizing target selection for infiltrating or ill-defined brain lesions. The use of PET scanning contributed data in 31 cases (93%) and information that was specifically utilized to adapt the target volume in 25 cases (74%). It would seem that the integration of PET data into GKS treatment planning may represent an important step toward further developments in radiosurgery: this approach provides additional information that may open new perspectives for the optimization of the treatment of brain tumors.


1996 ◽  
Vol 85 (2) ◽  
pp. 316-322 ◽  
Author(s):  
Curtis A. Dickman ◽  
Neil R. Crawford ◽  
Christopher G. Paramore

✓ The biomechanical characteristics of four different methods of C1–2 cable fixation were studied to assess the effectiveness of each technique in restoring atlantoaxial stability. Biomechanical testing was performed on the upper cervical spines of four human cadaveric specimens. Physiological range loading was applied to the atlantoaxial specimens and three-dimensional motion was analyzed with stereophotogrammetry. The load–deformation relationships and kinematics were measured, including the stiffness, the angular ranges of motion, the linear ranges of motion, and the axes of rotation. Specimens were nondestructively tested in the intact state, after surgical destabilization, and after each of four different methods of cable fixation. Cable fixation techniques included the interspinous technique, the Brooks technique, and two variants of the Gallie technique. All specimens were tested immediately after fixation and again after the specimen was fatigued with 6000 cycles of physiological range torsional loading. All four cable fixation methods were moderately flexible immediately; the different cable fixations allowed between 5° and 40° of rotational motion and between 0.6 and 7 mm of translational motion to occur at C1–2. The Brooks and interspinous methods controlled C1–2 motion significantly better than both of the Gallie techniques. The motion allowed by one of the Gallie techniques did not differ significantly from the motion of the unfixed destabilized specimens. All cable fixation techniques loosened after cyclic loading and demonstrated significant increases in C1–2 rotational and translational motions. The bone grafts shifted during cyclic loading, which reduced the effectiveness of the fixation. The locations of the axes of rotation, which were unconstrained and mobile in the destabilized specimens, became altered with cable fixation. The C1–2 cables constrained motion by shifting the axes of rotation so that C-1 rotated around the fixed cable and graft site. After the specimen was fatigued, the axes of rotation became more widely dispersed but were usually still localized near the cable and graft site. Adequate healing requires satisfactory control of C1–2 motion. Therefore, some adjunctive fixation is advocated to supplement the control of motion after C1–2 cable fixation (that is, a cervical collar, a halo brace, or rigid internal fixation with transarticular screws).


Sign in / Sign up

Export Citation Format

Share Document