Hemorrhagic complication of stereotactic surgery in patients with movement disorders

2003 ◽  
Vol 98 (6) ◽  
pp. 1241-1246 ◽  
Author(s):  
Tohru Terao ◽  
Hiroshi Takahashi ◽  
Fusako Yokochi ◽  
Makoto Taniguchi ◽  
Ryouichi Okiyama ◽  
...  

Object. Small, asymptomatic hemorrhages are easier to detect during stereotactic surgery when magnetic resonance (MR) imaging is used for targeting rather than when traditional approaches, such as ventriculography, are performed with contrast material. In the present study the authors examined the actual incidence of intraoperative hemorrhages in patients with movement disorders who had undergone MR imaging—targeted surgery, microelectrode recording (MER)-guided implantation of deep brain stimulation (DBS) electrodes, or radiofrequency-induced coagulation surgery performed. Methods. Ninety-six consecutive patients underwent a total of 116 stereotactic operations for movement disorders (57 operations for radiofrequency-induced coagulation and 59 for DBS electrode implantation) between January 1998 and November 2002. The authors investigated the correlation between hemorrhages and other factors including the location of the hemorrhage and the type of surgery performed. Postoperative computerized tomography scans demonstrated the occurrence of intraoperative hemorrhages at 12 locations during 11 procedures (9.5% of all procedures). Nine hemorrhages occurred during 57 coagulation operations (15.8%). Within this group, the frequency of hemorrhages was highest during thalamotomy (five [21.7%] of 23 procedures) and lower during pallidotomy (four [11.8%] of 34 procedures). In contrast, only two intraventricular hemorrhages developed during 59 operations in which DBS electrodes were implanted (3.4%). In no case was hemorrhage detected in the main DBS target, that is, the subthalamic nucleus. Conclusions. When small, asymptomatic hemorrhages were included in the estimation, the actual rate of hemorrhage was higher than that previously reported. Judging from the incidence of hemorrhage during coagulation and DBS surgeries, the authors suggest that the heat induced by coagulation may play a larger role than microelectrode penetration in the development of hemorrhage.

2000 ◽  
Vol 93 (3) ◽  
pp. 498-505 ◽  
Author(s):  
Cole A. Giller ◽  
Maureen Johns ◽  
Hanli Liu

✓ Localization of targets during stereotactic surgery is frequently accomplished by identification of the boundaries between the gray matter of various nuclei and the surrounding white matter. The authors describe an intracranial probe developed for this purpose, which uses near-infrared (NIR) light.The probe fits through standard stereotactic holders and emits light at its tip. The scattered light is detected and analyzed by a spectrometer, with the slope of the trailing portion of the reflectance curve used as the measurement value.Near-infrared readings were obtained during 27 neurosurgical procedures. The first three operations were temporal lobectomies, with values obtained from tracks in the resected specimen and resection bed. In the next five procedures, the probe was inserted stereotactically to a depth of 1 to 2 cm with measurements obtained every 1 mm. The probe was then used in 19 stereotactic procedures for movement disorders, obtaining measurements every 0.5 to 1 mm to target depths of 6 to 8 cm to interrogate subcortical structures. The NIR signals were correlated to distances beneath the cortical surface measured on postoperative computerized tomography or magnetic resonance imaging by using angle correction and three-dimensional reconstruction techniques.The NIR values for white and gray matter obtained during the lobectomies were significantly different (white matter 2.5 ± 0.37, gray matter 0.82 ± 0.23 mean ± standard deviation). The NIR values from the superficial stereotactic tracks showed initial low values corresponding to cortical gray matter and high values corresponding to subcortical white matter.There was good correlation between the NIR signals and postoperative imaging in the 19 stereotactic cases. Dips due to adjacent sulci, a plateau of high signal due to subcortical white matter, a dip in the NIR signal during passage through the ventricle, dips due to the caudate nucleus, and peaks due to the white matter capsule between ventricle and thalamus were constant features. The putamen—capsule boundary and the lamina externa and interna of the globus pallidus could be distinguished in three cases. Elevated signals corresponding to the thalamic floor were seen in 10 cases. Nuances such as prior lesions and nonspecific white matter changes were also detected. There was no incidence of morbidity associated with use of the probe. Data acquisition was straightforward and the equipment required for the studies was inexpensive.The NIR probe described in this article seems to be able to detect gray—white matter boundaries around and within subcortical structures commonly encountered in stereotactic functional neurosurgery. This simple, inexpensive method deserves further study to establish its efficacy for stereotactic localization.


2000 ◽  
Vol 93 (5) ◽  
pp. 784-790 ◽  
Author(s):  
Nathalie Vayssiere ◽  
Simone Hemm ◽  
Michel Zanca ◽  
Marie Christine Picot ◽  
Alain Bonafe ◽  
...  

Object. The actual distortion present in a given series of magnetic resonance (MR) images is difficult to establish. The purpose of this study was to validate an MR imaging—based methodology for stereotactic targeting of the internal globus pallidus during electrode implantation in children in whom general anesthesia had been induced.Methods. Twelve children (mean follow up 1 year) suffering from generalized dystonia were treated with deep brain stimulation by using a head frame and MR imaging. To analyze the influence of distortions at every step of the procedure, the geometrical characteristics of the frame were first controlled using the localizer as a phantom. Then pre- and postoperative coordinates of fixed anatomical landmarks and electrode positions, both determined with the head frame in place, were statistically compared.No significant difference was observed between theoretical and measured dimensions of the localizer (Student's t-test, |t| > 2.2 for 12 patients) in the x, y, and z directions.No significant differences were observed (Wilcoxon paired-sample test) between the following: 1) pre- and postoperative coordinates of the anterior commissure (AC) (Δx = 0.3 ± 0.29 mm and Δy = 0.34 ± 0.32 mm) and posterior commissure (PC) (Δx = 0.15 ± 0.18 mm and Δy = 0.34 ± 0.25 mm); 2) pre- and postoperative AC—PC distance (ΔL = 0.33 ± 0.22 mm); and 3) preoperative target and final electrode position coordinates (Δx = 0.24 ± 0.22 mm; Δy = 0.19 ± 0.16 mm).Conclusions. In the authors' center, MR imaging distortions did not induce detectable errors during stereotactic surgery in dystonic children. Target localization and electrode implantation could be achieved using MR imaging alone after induction of general anesthesia. The remarkable postoperative improvement in these patients confirmed the accuracy of the procedure (Burke—Marsden—Fahn Dystonia Rating Scale score Δ = −83.8%).


1999 ◽  
Vol 90 (3) ◽  
pp. 583-590 ◽  
Author(s):  
Ali R. Rezai ◽  
Andres M. Lozano ◽  
Adrian P. Crawley ◽  
Michael L. G. Joy ◽  
Karen D. Davis ◽  
...  

✓ The utility of functional magnetic resonance (fMR) imaging in patients with implanted thalamic electrodes has not yet been determined. The aim of this study was to establish the safety of performing fMR imaging in patients with thalamic deep brain stimulators and to determine the value of fMR imaging in detecting cortical and subcortical activity during stimulation.Functional MR imaging was performed in three patients suffering from chronic pain and two patients with essential tremor. Two of the three patients with pain had undergone electrode implantation in the thalamic sensory ventralis caudalis (Vc) nucleus and the other had undergone electrode implantation in both the Vc and the periventricular gray (PVG) matter. Patients with tremor underwent electrode implantation in the ventralis intermedius (Vim) nucleus. Functional MR imaging was performed during stimulation by using a pulse generator connected to a transcutaneous extension lead. Clinically, Vc stimulation evoked paresthesias in the contralateral body, PVG stimulation evoked a sensation of diffuse internal body warmth, and Vim stimulation caused tremor arrest.Functional images were acquired using a 1.5-tesla MR imaging system. The Vc stimulation at intensities provoking paresthesias resulted in activation of the primary somatosensory cortex (SI). Stimulation at subthreshold intensities failed to activate the SI. Additional stimulation-coupled activation was observed in the thalamus, the secondary somatosensory cortex (SII), and the insula. In contrast, stimulation of the PVG electrode did not evoke paresthesias or activate the SI, but resulted in medial thalamic and cingulate cortex activation. Stimulation in the Vim resulted in thalamic, basal ganglia, and SI activation.An evaluation of the safety of the procedure indicated that significant current could be induced within the electrode if a faulty connecting cable (defective insulation) came in contact with the patient. Simple precautions, such as inspection of wires for fraying and prevention of their contact with the patient, enabled the procedure to be conducted safely. Clinical safety was further corroborated by performing 86 MR studies in patients in whom electrodes had been implanted with no adverse clinical effects.This is the first report of the use of fMR imaging during stimulation with implanted thalamic electrodes. The authors' findings demonstrate that fMR imaging can safely detect the activation of cortical and subcortical neuronal pathways during stimulation and that stimulation does not interfere with imaging. This approach offers great potential for understanding the mechanisms of action of deep brain stimulation and those underlying pain and tremor generation.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 68-73 ◽  
Author(s):  
Pierre-Hugues Roche ◽  
Jean Régis ◽  
Henry Dufour ◽  
Henri-Dominique Fournier ◽  
Christine Delsanti ◽  
...  

Object. The authors sought to assess the functional tolerance and tumor control rate of cavernous sinus meningiomas treated by gamma knife radiosurgery (GKS). Methods. Between July 1992 and October 1998, 92 patients harboring benign cavernous sinus meningiomas underwent GKS. The present study is concerned with the first 80 consecutive patients (63 women and 17 men). Gamma knife radiosurgery was performed as an alternative to surgical removal in 50 cases and as an adjuvant to microsurgery in 30 cases. The mean patient age was 49 years (range 6–71 years). The mean tumor volume was 5.8 cm3 (range 0.9–18.6 cm3). On magnetic resonance (MR) imaging the tumor was confined in 66 cases and extensive in 14 cases. The mean prescription dose was 28 Gy (range 12–50 Gy), delivered with an average of eight isocenters (range two–18). The median peripheral isodose was 50% (range 30–70%). Patients were evaluated at 6 months, and at 1, 2, 3, 5, and 7 years after GKS. The median follow-up period was 30.5 months (range 12–79 months). Tumor stabilization after GKS was noted in 51 patients, tumor shrinkage in 25 patients, and enlargement in four patients requiring surgical removal in two cases. The 5-year actuarial progression-free survival was 92.8%. No new oculomotor deficit was observed. Among the 54 patients with oculomotor nerve deficits, 15 improved, eight recovered, and one worsened. Among the 13 patients with trigeminal neuralgia, one worsened (contemporary of tumor growing), five remained unchanged, four improved, and three recovered. In a patient with a remnant surrounding the optic nerve and preoperative low vision (3/10) the decision was to treat the lesion and deliberately sacrifice the residual visual acuity. Only one transient unexpected optic neuropathy has been observed. One case of delayed intracavernous carotid artery occlusion occurred 3 months after GKS, without permanent deficit. Another patient presented with partial complex seizures 18 months after GKS. All cases of tumor growth and neurological deficits observed after GKS occurred before the use of GammaPlan. Since the initiation of systematic use of stereotactic MR imaging and computer-assisted modern dose planning, no more side effects or cases of tumor growth have occurred. Conclusions. Gamma knife radiosurgery was found to be an effective low morbidity—related tool for the treatment of cavernous sinus meningioma. In a significant number of patients, oculomotor functional restoration was observed. The treatment appears to be an alternative to surgical removal of confined enclosed cavernous sinus meningioma and should be proposed as an adjuvant to surgery in case of extensive meningiomas.


2002 ◽  
Vol 97 ◽  
pp. 600-606 ◽  
Author(s):  
Chihiro Ohye ◽  
Tohru Shibazaki ◽  
Jie Zhang ◽  
Yoshitaka Andou

Object. The treatment of Parkinson disease and other kinds of involuntary movement by gamma knife radiosurgery (GKS) is presented. This is an extension of previous work. The clinical course and thalamic lesions were the main factors examined. Methods. Seventeen new cases were added to the previously reported 36 cases. The course and results for the whole series of 53 patients were examined. Treatment was undertaken using a single 4-mm collimator shot to deliver 130 Gy to the target. The target was determined in the previously treated patients by using classic methods involved in conventional stereotactic thalamotomy with microrecording. More recently, target localization has been performed by relating the target point to the total length of the thalamus. Points may then be defined as percentages of that length measured from the anterior pole. Targets can then be determined in relationship to the appropriate percentage. Thirty-five patients have been followed for more than 2 years and the longest follow up was 8 years. Two kinds of thalamic lesion were seen after GKS. Volumetric analysis on MR imaging revealed that the larger lesion was 400 to 500 mm3 at the beginning and gradually decreased in size. The smaller lesion occupied approximately 200 mm3 and also shrank over several months. Eighty percent of the treated cases showed good results and no significant complications, with the tremor subsiding at 1 year (Type 1). Several cases deviated from this standard course in four different ways (Types 2–5). If tremor persisted, conventional stereotactic thalamotomy with microrecording was performed. During such operations, normal neuronal activity was recorded from the region adjacent to the GKS thalamotomy target. This was the region showing a high signal on MR imaging. The activity patterns included the rhythmical grouped discharge of tremor rhythm. Conclusions. Gamma thalamotomy for functional disorders is still under development, but because the results with careful target planning are satisfactory, there are grounds for increasing optimism.


2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 87-97 ◽  
Author(s):  
Wen-Yuh Chung ◽  
Kang-Du Liu ◽  
Cheng-Ying Shiau ◽  
Hsiu-Mei Wu ◽  
Ling-Wei Wang ◽  
...  

Object. The authors conducted a study to determine the optimal radiation dose for vestibular schwannoma (VS) and to examine the histopathology in cases of treatment failure for better understanding of the effects of irradiation. Methods. A retrospective study was performed of 195 patients with VS; there were 113 female and 82 male patients whose mean age was 51 years (range 11–82 years). Seventy-two patients (37%) had undergone partial or total excision of their tumor prior to gamma knife surgery (GKS). The mean tumor volume was 4.1 cm3 (range 0.04–23.1 cm3). Multiisocenter dose planning placed a prescription dose of 11 to 18.2 Gy on the 50 to 94% isodose located at the tumor margin. Clinical and magnetic resonance (MR) imaging follow-up evaluations were performed every 6 months. A loss of central enhancement was demonstrated on MR imaging in 69.5% of the patients. At the latest MR imaging assessment decreased or stable tumor volume was demonstrated in 93.6% of the patients. During a median follow-up period of 31 months resection was avoided in 96.8% of cases. Uncontrolled tumor swelling was noted in five patients at 3.5, 17, 24, 33, and 62 months after GKS, respectively. Twelve of 20 patients retained serviceable hearing. Two patients experienced a temporary facial palsy. Two patients developed a new trigeminal neuralgia. There was no treatment-related death. Histopathological examination of specimens in three cases (one at 62 months after GKS) revealed a long-lasting radiation effect on vessels inside the tumor. Conclusions. Radiosurgery had a long-term radiation effect on VSs for up to 5 years. A margin 12-Gy dose with homogeneous distribution is effective in preventing tumor progression, while posing no serious threat to normal cranial nerve function.


1996 ◽  
Vol 84 (6) ◽  
pp. 962-971 ◽  
Author(s):  
Tohru Mizutani

✓ A long-term follow-up study (minimum duration 2 years) was made of 13 patients with tortuous dilated basilar arteries. Of these, five patients had symptoms related to the presence of such arteries. Symptoms present at a very early stage included vertebrobasilar insufficiency in two patients, brainstem infarction in two patients, and left hemifacial spasm in one patient. Initial magnetic resonance (MR) imaging in serial slices of basilar arteries obtained from the five symptomatic patients showed an intimal flap or a subadventitial hematoma, both of which are characteristic of a dissecting aneurysm. In contrast, the basilar arteries in the eight asymptomatic patients did not show particular findings and they remained clinically and radiologically silent during the follow-up period. All of the lesions in the five symptomatic patients gradually grew to fantastic sizes, with progressive deterioration of the related clinical symptoms. Dilation of the basilar artery was consistent with hemorrhage into the “pseudolumen” within the laminated thrombus, which was confirmed by MR imaging studies. Of the five symptomatic patients studied, two died of fatal subarachnoid hemorrhage (SAH) and two of brainstem compression; the fifth patient remains alive without neurological deficits. In the three patients who underwent autopsy, a definite macroscopic double lumen was observed in both the proximal and distal ends of the aneurysms within the layer of the thickening intima. Microscopically, multiple mural dissections, fragmentation of internal elastic lamina (IEL), and degeneration of media were diffusely observed in the remarkably extended wall of the aneurysms. The substantial mechanism of pathogenesis and enlargement in the symptomatic, highly tortuous dilated artery might initially be macroscopic dissection within a thickening intima and subsequent repetitive hemorrhaging within a laminated thrombus in the pseudolumen combined with microscopic multiple mural dissections on the basis of a weakened IEL. The authors note and caution that symptomatic, tortuous dilated basilar arteries cannot be overlooked because they include a group of malignant arteries that may grow rapidly, resulting in a fatal course.


1999 ◽  
Vol 90 (2) ◽  
pp. 264-266 ◽  
Author(s):  
Pierre Robe ◽  
Didier Martin ◽  
Jacques Lenelle ◽  
Achille Stevenaert

✓ The posterior epidural migration of sequestered lumbar disc fragments is an uncommon event. The authors report two such cases in which patients presented with either intense radicular pain or cauda equina syndrome. The radiological characteristics were the posterior epidural location and the ring enhancement of the mass after injection of contrast material. The major diagnostic pitfalls are discussed.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


2005 ◽  
Vol 102 ◽  
pp. 234-240 ◽  
Author(s):  
Chihiro Ohye ◽  
Tohru Shibazaki ◽  
Sumito Sato

Object.The authors studied the effects of gamma knife thalamotomy (GKT) on Parkinson disease-related tremor and essential tremor before and after reloading of radioactive cobalt.Methods.Based on experience in stereotactic thalamotomy aided by depth microrecording, the target was located at the lateral border of the thalamic ventralis intermedius nucleus (VIM). For more precise targeting, the percentage representation of the thalamic VIM in relation to the entire thalamic length is useful. The location of the target was determined on magnetic resonance (MR) imaging and computerized tomography scanning. A maximum dose of 130 Gy was delivered to the target by using a single isocenter with the 4-mm collimator. In more recent cases, a systematic follow-up examination was performed at 3, 6, 12, 18, and 24 months after GKT.Since 1993, the authors have treated 70 patients with PD. Throughout the series the same dosimetric technique has been used. The course after GKT was compared between the 25 cases with PD treated before reloading and the 35 cases treated after reloading. In the majority (80–85%) treated after reloading, tremor and rigidity were reduced around 6 months after GKT. In the cases treated before reloading this effect took approximately 1 year. The thalamic reaction on MR imaging showed the same two lesion types in both series: a restricted and a diffuse. After reloading the restricted lesion was more frequent and the lesion volume was smaller.Conclusions.The shorter delay in clinical improvement and smaller lesion size may be related to an increased radiation dose.


Sign in / Sign up

Export Citation Format

Share Document