Nonlesional central lobule seizures: use of awake cortical mapping and subdural grid monitoring for resection of seizure focus

2003 ◽  
Vol 98 (6) ◽  
pp. 1255-1262 ◽  
Author(s):  
Aaron A. Cohen-Gadol ◽  
Jeffrey W. Britton ◽  
Frederic P. Collignon ◽  
Lisa M. Bates ◽  
Gregory D. Cascino ◽  
...  

Object. Surgical treatment options for intractable seizures caused by a nonlesional epileptogenic focus located in the central sulcus region are limited. The authors describe an alternative surgical approach for treating medically refractory nonlesional perirolandic epilepsy. Methods. Five consecutive patients who were treated between 1996 and 2000 for nonlesional partial epilepsy that had originated in the central lobule were studied. The patients' ages ranged from 16 to 56 years (mean 28.6 years; there were four men and one woman). The duration of their epilepsy ranged from 8 to 39 years (mean 20.2 years), with a mean seizure frequency of 19 partial seizures per week. Preoperative assessment included video electroencephalography (EEG) and subtracted ictal—interictal single-photon emission computerized tomography coregistered with magnetic resonance imaging (SISCOM). Patients underwent an awake craniotomy stereotactically guided by the ictal EEG and SISCOM studies. Cortical stimulation was used to identify the sensorimotor cortex and to reproduce the patient's aura. A subdural grid was then implanted based on these results. Subsequent postoperative ictal electrocorticographic recordings and cortical stimulation further delineated the site of seizure onset and functional anatomy. During a second awake craniotomy, a limited resection of the epileptogenic central lobule region was performed while function was continuously monitored intraoperatively. One resection was limited to the precentral gyrus, two to the postcentral gyrus, and in two the excisions involved regions of both the pre- and postcentral gyri. In three patients a hemiparesis occurred postsurgery but later resolved. In the four patients whose resection involved the postcentral gyrus, transient cortical sensory loss and apraxia occurred, which completely resolved in three. Two patients are completely seizure free, two have experienced occasional nondisabling seizures, and one patient has benefited from a more than 75% reduction in seizure frequency. The follow-up period ranged from 2 to 5.5 years (mean 3.5 years). Conclusions. A limited resection of the sensorimotor cortex may be performed with acceptable neurological morbidity in patients with medically refractory perirolandic epilepsy. This procedure is an alternative to multiple subpial transections in the surgical management of intractable nonlesional epilepsy originating from the sensorimotor cortex.

1988 ◽  
Vol 68 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Charles C. Wood ◽  
Dennis D. Spencer ◽  
Truett Allison ◽  
Gregory McCarthy ◽  
Peter D. Williamson ◽  
...  

✓ The traditional means of localizing sensorimotor cortex during surgery is Penfield's procedure of mapping sensory and motor responses elicited by electrical stimulation of the cortical surface. This procedure can accurately localize sensorimotor cortex but is time-consuming and best carried out in awake, cooperative patients. An alternative localization procedure is presented that involves cortical surface recordings of somatosensory evoked potentials (SEP's), providing accurate and rapid localization in patients under either local or general anesthesia. The morphology and amplitude of median nerve SEP's recorded from the cortical surface varied systematically as a function of spatial location relative to the sensorimotor hand representation area. These results were validated in 18 patients operated on under local anesthesia in whom the sensorimotor cortex was independently localized by electrical stimulation mapping; the two procedures were in agreement in all cases. Similar SEP results were demonstrated in an additional 27 patients operated on under general anesthesia without electrical stimulation mapping. The following three spatial relationships between SEP's and the anatomy of the sensorimotor cortex permit rapid and accurate localization of the sensorimotor hand area: 1) SEP's with approximately mirror-image waveforms are recorded at electrode sites in the hand area on opposite sides of the central sulcus (P20–N30 precentrally (for consistency) and N20–P30 postcentrally); 2) the P25–N35 is recorded from the postcentral gyrus as well as a small region of the precentral gyrus in the immediate vicinity of the central sulcus: this waveform is largest on the postcentral gyrus about 1 cm medial to the focus of the 20- and 30-msec potentials; and 3) regardless of component identification, maximum SEP amplitudes are recorded from the hand representation area on the precentral and postcentral gyri.


1971 ◽  
Vol 34 (4) ◽  
pp. 537-543 ◽  
Author(s):  
Richard A. Lende ◽  
Wolff M. Kirsch ◽  
Ralph Druckman

✓ Cortical removals which included precentral and postcentral facial representations resulted in relief of facial pain in two patients. Because of known failures following only postcentral (SmI) ablations, these operations were designed to eliminate also the cutaneous afferent projection to the precentral gyrus (MsI) and the second somatic sensory area (SmII). In one case burning pain developed after a stroke involving the brain stem and was not improved by total fifth nerve section; prompt relief followed corticectomy and lasted until death from heart disease 20 months later. In the other case persistent steady pain that developed after fifth rhizotomy for trigeminal neuralgia proved refractory to frontal lobotomy; relief after corticectomy was immediate and has lasted 14 months. Cortical localization was established by stimulation under local anesthesia. Each removal extended up to the border of the arm representation and down to the upper border of the insula. Such a resection necessarily included SmII, and in one case responses presumably from SmII were obtained before removal. The suggestions of Biemond (1956) and Poggio and Mountcastle (1960) that SmII might be concerned with pain sensibility may be pertinent in these cases.


1988 ◽  
Vol 68 (4) ◽  
pp. 559-565 ◽  
Author(s):  
Ian F. Pollack ◽  
Peter J. Jannetta ◽  
David J. Bissonette

✓ Thirty-five patients with trigeminal neuralgia (TN) bilaterally underwent posterior fossa microvascular decompression (MVD) between 1971 and 1984. They comprised 5.0% of a larger series of 699 patients with TN who underwent MVD during that interval. Compared to the subgroup of 664 patients with only unilateral symptoms, the population with bilateral TN included a greater percentage of females (74% vs. 58%, p < 0.1), a higher rate of “familial” TN (17% vs. 4.1%, p < 0.001), and an increased incidence of additional cranial nerve dysfunction (17% vs. 6.6%, p < 0.05) and hypertension (34% vs. 19%, p < 0.05). Of the 35 patients with bilateral TN, 10 underwent bilateral MVD (22 procedures) and 25 underwent unilateral MVD (30 procedures). In the latter patients, pain on the nonoperative side was well controlled with medication alone or had previously been treated by ablative procedures. Good or excellent pain control was achieved after one MVD was performed in 40 of the 45 sides treated (89%), and was maintained 1, 5, and 10 years after surgery in 82%, 66%, and 60%, respectively, based on life-table analysis. Six of 10 patients with recurrent symptoms underwent repeat unilateral MVD. Good or excellent long-term pain control was maintained in all six. With these repeat procedures included, symptom control at 1, 5, and 10 years after initial surgery was maintained in 87%, 78%, and 78% of the treated sides, respectively. Overall, 26 of 35 patients (74%) maintained good or excellent pain relief throughout the duration of the study (mean follow-up period 75 months) without resumption of regular medication usage. Although preoperative neurological deficits resulting from previous ablative procedures were seen in the majority of patients before MVD, no patient developed new major trigeminal sensory loss or masseter weakness after MVD. Operative mortality was zero. The results indicate that posterior fossa MVD is an effective and relatively safe treatment for the majority of patients with bilateral “idiopathic” TN, avoiding the risks of bilateral trigeminal nerve injury seen with other approaches.


2003 ◽  
Vol 99 (2) ◽  
pp. 304-310 ◽  
Author(s):  
Yoshihiro Murata ◽  
Yoichi Katayama ◽  
Kaoru Sakatani ◽  
Chikashi Fukaya ◽  
Tsuneo Kano

Object. It has been reported that extracranial—intracranial (EC—IC) arterial bypass surgery can be useful in preventing stroke in patients with hemodynamic compromise. Little is yet known, however, regarding the extent to which the bypass contributes to maintaining adequate cerebral blood oxygenation (CBO) and its temporal changes following surgery. The authors evaluated bypass function repeatedly by using near-infrared spectroscopy (NIRS) after surgery. Methods. The authors investigated 30 patients who had undergone EC—IC bypass surgery. Single-photon emission computerized tomography revealed a decrease in regional cerebral blood flow (rCBF) and a lowered rCBF response to acetazolamide. Changes in CBO were evaluated in the sensorimotor cortex during compression of the anastomosed superficial temporal artery (STA). When decreases in oxyhemoglobin (HbO2) and total hemoglobin (Hb) concentrations were observed, the bypass was considered to have maintained CBO in the sensorimotor cortex given that decreases in HbO2 and total Hb indicate cerebral ischemic changes. The bypass maintained CBO immediately after surgery in 36.7% of patients (Group I, 11 patients) and at some time after surgery, mostly within 1 year, in 43.3% of patients (Group II, 13 patients); however, it did not maintain it throughout the follow-up period in 20% of patients (Group III, six patients). Note that the preoperative rCBF in patients in Groups I and II was lower than that in patients in Group III (p < 0.004). In fact, the preoperative rCBF predicted whether a bypass would maintain CBO at a cutoff value of 24.5 to 25 ml/100 g/min. Among Groups I and II, 18 patients demonstrated an increase in deoxyhemoglobin during STA compression. The preoperative rCBF in these cases was lower than that in the six remaining patients (p < 0.006). Note that the preoperative rCBF predicted the postoperative deoxyhemoglobin response at a cutoff value of 22.2 to 24 ml/100 g/min. Conclusions. The EC—IC bypass surgery can maintain CBO immediately after surgery or gradually within 1 year when the preoperative rCBF is below 24.5 to 25 ml/100 g/min. Furthermore, bypass flow plays a critical role in maintaining an adequate CBO when preoperative rCBF is below 22.2 to 24 ml/100 g/min.


2004 ◽  
Vol 1 (2) ◽  
pp. 179-187 ◽  
Author(s):  
John E. McGillicuddy

✓ The common diagnoses of cervical radiculopathy and upper-extremity entrapment neuropathies can at times be difficult to differentiate. Additionally, thoracic outlet syndrome is often diagnosed when, in fact, the problem is radiculopathy or neuropathy. Another source of confusion, especially in older patients, is neuralgic amyotrophy, brachial plexitis, or the Parsonage—Turner syndrome. The differential diagnosis of unilateral arm pain, weakness, and/or sensory loss includes all of these problems. The clinical and electrodiagnostic features of each are discussed as an aid to distinguishing between these common and similar entities.


1999 ◽  
Vol 90 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Richard G. Bittar ◽  
André Olivier ◽  
Abbas F. Sadikot ◽  
Frederick Andermann ◽  
Roch M. Comeau ◽  
...  

Object. To investigate the utility of [15O]H2O positron emission tomography (PET) activation studies in the presurgical mapping of primary somatosensory cortex, the authors compared the magnitude and location of activation foci obtained using PET scanning with the results of intraoperative cortical stimulation (ICS).Methods. The authors used PET scanning and vibrotactile stimulation (of the face, hand, or foot) to localize the primary somatosensory cortex before surgical resection of mass lesions or epileptogenic foci affecting the central area in 20 patients. With the aid of image-guided surgical systems, the locations of significant activation foci on PET scanning were compared with those of positive ICS performed at craniotomy after the patient had received a local anesthetic agent. In addition, the relationship between the magnitude and statistical significance of blood flow changes and the presence of positive ICS was examined.In 22 (95.6%) of 23 statistically significant (p < 0.05) PET activation foci, spatially concordant sites on ICS were also observed. Intraoperative cortical stimulation was positive in 40% of the PET activation studies that did not result in statistically significant activation. In the patients showing these results, there was a clearly identifiable t-statistic peak that was spatially concordant with the site of positive ICS in the sensorimotor area. All PET activation foci with a t statistic greater than 4.75 were associated with spatially concordant sites of positive ICS. All PET activation foci with a t statistic less than 3.2 were associated with negative ICS.Conclusions. Positron emission tomography is an accurate method for mapping the primary somatosensory cortex before surgery. The need for ICS, which requires local anesthesia, may be eliminated when PET foci with high (> 4.75) or low (< 3.20) t-statistic peaks are elicited by vibrotactile stimulation.


2004 ◽  
Vol 101 (5) ◽  
pp. 787-798 ◽  
Author(s):  
Vincent Lubrano ◽  
Franck-Emmanuel Roux ◽  
Jean-François Démonet

Object. The aim of this study was to determine whether cortical areas involved in the writing process are associated with reading or naming areas in patients undergoing surgery for brain tumors in frontal areas. This study was undertaken to spare all language areas found in patients during surgery. Methods. Fourteen patients (eight women and six men [mean age 47 years] of whom 12 were right handed, two left handed, 12 monolingual, and two bilingual) who harbored brain tumors in the left (11 patients) or right (three patients) frontal gyri or in rolandic areas, were tested by direct stimulation by using the awake surgery technique for direct brain mapping. Mapping of the frontal gyri was performed using naming, reading, and writing under dictation tasks in the appropriate language(s). Considerable individual variability in language organization among patients was observed. Interferences in writing were found during direct stimulation in the frontal gyri, in cortical sites common or not common to interferences in naming or reading. In dominant regions, patterns of writing dysfunctions were variable and included writing arrest, illegible script, letter omissions, and paragraphia. These dysfunctions were nonspecific (stimulation-induced eye movements) in nondominant frontal regions and in rolandic gyri (hand contractions). In the same patient, different writing impairments could sometimes be observed during stimulation of different sites. As is the case for naming or reading interference sites, writing interference sites could be extremely localized (1 cm2 in diameter). In this group of patients, writing interference sites found in Broca areas were associated with other sites of language interference, whereas writing-specific interference sites were found twice in the dominant middle frontal gyrus. Conclusions. In this series, we found that writing interference sites could be detected by direct cortical stimulation in dominant inferior and middle frontal gyri regardless of whether they were associated with naming or reading interference sites. Writing disorders elicited by direct stimulation in the frontal lobes are varied and probably depend on the functional status of the stimulated cortical area.


2005 ◽  
Vol 103 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Nicole Petrovich ◽  
Andrei I. Holodny ◽  
Viviane Tabar ◽  
Denise D. Correa ◽  
Joy Hirsch ◽  
...  

Object. The goal of this study was to investigate discordance between the location of speech arrest during awake cortical mapping, a common intraoperative indicator of hemispheric dominance, and silent speech functional magnetic resonance (fMR) imaging maps of frontal language function. Methods. Twenty-one cases were reviewed retrospectively. Images of silent speech fMR imaging activation were coregistered to anatomical MR images obtained for neuronavigation. These were compared with the intraoperative cortical photographs and the behavioral results of electrocorticography during awake craniotomy. An fMR imaging control study of three healthy volunteers was then conducted to characterize the differences between silent and vocalized speech fMR imaging protocols used for neurosurgical planning. Conclusions. Results of fMR imaging showed consistent and predominant activation of the inferior frontal gyrus (IFG) during silent speech tasks. During intraoperative mapping, however, 16 patients arrested in the precentral gyrus (PRG), well posterior to the fMR imaging activity. Of those 16, 14 arrested only in the PRG and not in the IFG as silent speech fMR imaging predicted. The control fMR imaging study showed that vocalized speech fMR imaging shifts the location of the fMR imaging prediction to include the motor strip and may be more appropriate for neurosurgical planning.


1999 ◽  
Vol 91 (2) ◽  
pp. 238-250 ◽  
Author(s):  
Javier Fandino ◽  
Spyros S. Kollias ◽  
Heinz G. Wieser ◽  
Anton Valavanis ◽  
Yasuhiro Yonekawa

Object. The purpose of the present study was to compare the results of functional magnetic resonance (fMR) imaging with those of intraoperative cortical stimulation in patients who harbored tumors close to or involving the primary motor area and to assess the usefulness of fMR imaging in the objective evaluation of motor function as part of the surgical strategy in the treatment of these patients.Methods. A total of 11 consecutive patients, whose tumors were close to or involving the central region, underwent presurgical blood oxygen level—dependent fMR imaging while performing a motor paradigm that required them to clench and spread their hands contra- and ipsilateral to the tumor. Statistical cross-correlation functional maps covering the primary and secondary motor cortical areas were generated and overlaid onto high-resolution anatomical MR images. Intraoperative electrical cortical stimulation was performed to validate the presurgical fMR imaging findings. In nine (82%) of 11 patients, the anatomical fMR imaging localization of motor areas could be verified by intraoperative electrical cortical stimulation. In seven patients two or more activation sites were demonstrated on fMR imaging, which were considered a consequence of reorganization phenomena of the motor cortex: contralateral primary motor area (nine patients), contralateral premotor area (four patients), ipsilateral primary motor area (two patients), and ipsilateral premotor area (four patients).Conclusions. Functional MR imaging can be used to perform objective evaluation of motor function and surgical planning in patients who harbor lesions near or involving the primary motor cortex. Correlation between fMR imaging findings and the results of direct electrical brain stimulation is high, although not 100%. Based on their study, the authors believe that cortical reorganization patterns of motor areas might explain the differences in motor function and the diversity of postoperative motor function among patients with central tumors.


2001 ◽  
Vol 95 (5) ◽  
pp. 804-815 ◽  
Author(s):  
Elie Lobel ◽  
Philippe Kahane ◽  
Ute Leonards ◽  
Marie-Hélène Grosbras ◽  
Stéphane Lehéricy ◽  
...  

Object. The goal of this study was to investigate the anatomical localization and functional role of human frontal eye fields (FEFs) by comparing findings from two independently conducted studies. Methods. In the first study, 3-tesla functional magnetic resonance (fMR) imaging was performed in 14 healthy volunteers divided into two groups: the first group executed self-paced voluntary saccades in complete darkness and the second group repeated newly learned or familiar sequences of saccades. In the second study, intracerebral electrical stimulation (IES) was performed in 38 patients with epilepsy prior to surgery, and frontal regions where stimulation induced versive eye movements were identified. These studies showed that two distinct oculomotor areas (OMAs) could be individualized in the region classically corresponding to the FEFs. One OMA was consistently located at the intersection of the superior frontal sulcus with the fundus of the superior portion of the precentral sulcus, and was the OMA in which saccadic eye movements could be the most easily elicited by electrical stimulation. The second OMA was located more laterally, close to the surface of the precentral gyrus. The fMR imaging study and the IES study demonstrated anatomical and stereotactic agreement in the identification of these cortical areas. Conclusions. These findings indicate that infracentimetric localization of cortical areas can be achieved by measuring the vascular signal with the aid of 3-tesla fMR imaging and that neuroimaging and electrophysiological recording can be used together to obtain a better understanding of the human cortical functional anatomy.


Sign in / Sign up

Export Citation Format

Share Document