Prevention of apoptotic but not necrotic cell death following neuronal injury by neurotrophins signaling through the tyrosine kinase receptor

2004 ◽  
Vol 100 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Dong H. Kim ◽  
Xiurong Zhao ◽  
Christina H. Tu ◽  
Patrizia Casaccia-Bonnefil ◽  
Moses V. Chao

Object. Neurotrophins prevent the death of neurons during embryonal development and have potential as therapeutic agents. During development, neuronal death occurs only by apoptosis and not by necrosis. Following injury, however, neurons can die by both processes. Data from prior studies have not clearly indicated whether neurotrophins can decrease apoptosis compared with necrosis. The goal of this study was to determine the effect of neurotrophin treatment on each of these processes following injury and to characterize the receptor(s) required. Methods. The authors used an in vitro model of injury with the aid of primary cortical neurons obtained from rat embryos. After 9 days in culture and the elimination of glia, homogeneous and mature neurons were available for experimentation. Noxious stimuli were applied, including radiation, hypoxia, and ischemia. Subsequent cell death by apoptosis or necrosis was noted based on morphological and enzymatic assessments (such as lactate dehydrogenase [LDH] release) and assays for DNA fragmentation. The effect of treatment with nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 was determined. Finally, Western blot analyses were performed to note the neurotrophin receptor status in the neurons (tyrosine kinase receptors [Trks] and p75). The authors studied different stimuli-induced cell death by using different processes. With the application of radiation, cells died primarily by apoptosis, as evidenced by cell shrinkage, the presence of apoptotic bodies, and specific DNA fragmentation. This was a delayed process (> 6 hours) that could be reduced by gene transcription or protein synthesis inhibitors. With ischemia, cells died immediately by necrosis, showing cell enlargement and rupture. Ischemic cell death was not affected by the inhibition of macromolecular synthesis. Hypoxia produced a mixture of the two cell death processes. Both BDNF and neurotrophin-3 demonstrated protection against apoptotic cell death only. Statistically significant decreases of both LDH release and apoptosis-specific DNA fragmentation were noted following radiation and hypoxia, but not for ischemia. Nerve growth factor, unlike the other neurotrophins, did not affect apoptosis because a functional receptor, Trk A, was not expressed by the cortical neurons. There was expression of both Trk B and Trk C, which bind BDNF and neurotrophin-3. Conclusions. These findings have significant clinical implications. Neurotrophins may only be effective in disorders in which apoptosis, and not necrosis, is the major process. Furthermore, the Trk signaling cascade must be activated for this response to occur. Because the expression of these receptors diminishes in adulthood, neurotrophin application may be most appropriate in the pediatric population.

1999 ◽  
Vol 91 (3) ◽  
pp. 447-453 ◽  
Author(s):  
Haring J. W. Nauta ◽  
Joseph C. Wehman ◽  
Vassilis E. Koliatsos ◽  
Marylee A. Terrell ◽  
Kyungsoon Chung

Object. The results of previous clinical trials have indicated that intraventricular infusion of nerve growth factor (NGF) in patients with Alzheimer's disease is frustrated by the appearance of weight loss and diffuse back pain. The present study tested whether NGF induces sympathetic sprouting in sensory ganglia. Such sprouting has been implicated in previous studies as a possible mechanism of sympathetically maintained pain in neuropathic animals.Methods. Nineteen Long—Evans rats underwent intraventricular infusion of either artificial cerebrospinal fluid (ACSF; seven animals) or NGF (12 animals). After 14 days of infusion, the sensory ganglia of the trigeminal nerve and the C-2, C-8, T-1, L-4, and L-5 dorsal roots were examined for sympathetic sprouting by using tyrosine hydroxylase immunohistochemical analysis.Conclusions. In the animals receiving NGF, 52 of 144 ganglia showed sympathetic fiber sprouting. In the control animals receiving ACSF, only two of 72 ganglia showed minor sympathetic fiber sprouting. A preferential sprouting of sympathetic fibers was demonstrated at lower lumbar ganglia compared with the cervical and thoracic ganglia. The data presented here demonstrate that in the rat intraventricular NGF infusion caused sympathetic sprouting in dorsal root ganglia (p < 0.01). These findings may have importance both for the treatment of Alzheimer's disease and the understanding of neuropathic pain.


1993 ◽  
Vol 123 (5) ◽  
pp. 1207-1222 ◽  
Author(s):  
T L Deckwerth ◽  
E M Johnson

The time course of molecular events that accompany degeneration and death after nerve growth factor (NGF) deprivation and neuroprotection by NGF and other agents was examined in cultures of NGF-dependent neonatal rat sympathetic neurons and compared to death by apoptosis. Within 12 h after onset of NGF deprivation, glucose uptake, protein synthesis, and RNA synthesis fell precipitously followed by a moderate decrease of mitochondrial function. The molecular mechanisms underlying the NGF deprivation-induced decrease of protein synthesis and neuronal death were compared and found to be different, demonstrating that this decrease of protein synthesis is insufficient to cause death subsequently. After these early changes and during the onset of neuronal atrophy, inhibition of protein synthesis ceased to halt neuronal degeneration while readdition of NGF or a cAMP analogue remained neuroprotective for 6 h. This suggests a model in which a putative killer protein reaches lethal levels several hours before the neurons cease to respond to readdition of NGF with survival and become committed to die. Preceding loss of viability by 5 h and concurrent with commitment to die, the neuronal DNA fragmented into oligonucleosomes. The temporal and pharmacological characteristics of DNA fragmentation is consistent with DNA fragmentation being part of the mechanism that commits the neuron to die. The antimitotic and neurotoxin cytosine arabinoside induced DNA fragmentation in the presence of NGF, supporting previous evidence that it mimicked NGF deprivation-induced death closely. Thus trophic factor deprivation-induced death occurs by apoptosis and is an example of programmed cell death.


2001 ◽  
Vol 94 (5) ◽  
pp. 765-774 ◽  
Author(s):  
Matthew F. Philips ◽  
Gustav Mattiasson ◽  
Tadeusz Wieloch ◽  
Anders Björklund ◽  
Barbro B. Johansson ◽  
...  

Object. Immortalized neural progenitor cells derived from embryonic rat hippocampus (HiB5), were transduced ex vivo with the gene for mouse nerve growth factor (NGF) to secrete NGF (NGF-HiB5) at 2 ng/hr/105 cells in culture. Methods. Fifty-nine male Wistar rats weighing 300 to 370 g each were anesthetized with 60 mg/kg sodium pentobarbital and subjected to lateral fluid-percussion brain injury of moderate severity (2.3–2.4 atm, 34 rats) or sham injury (25 rats). At 24 hours postinjury, 2 µl (150,000 cells/µl) of [3H]thymidine-labeled NGF-HiB5 cells were transplanted stereotactically into three individual sites in the cerebral cortex adjacent to the injury site (14 rats). Separate groups of brain-injured rats received nontransfected (naive [n])-HiB5 cells (12 animals) or cell suspension vehicle (eight animals). One week postinjury, animals underwent neurological evaluation for motor function and cognition (Morris water maze) and were killed for histological, autoradiographic, and immunocytochemical analysis. Viable HiB5 cell grafts were identified in all animals, together with reactive microglia and macrophages located throughout the periinjured parenchyma and grafts (OX-42 immunohistochemistry). Brain-injured animals transplanted with either NGF-HiB5 or n-HiB5 cells displayed significantly improved neuromotor function (p < 0.05) and spatial learning behavior (p < 0.005) compared with brain-injured animals receiving microinjections of vehicle alone. A significant reduction in hippocampal CA3 cell death was observed in brain-injured animals receiving transplants of NGF-HiB5 cells compared with those receiving n-HiB5 cells or vehicle (p < 0.025). Conclusions. This study demonstrates that immortalized neural stem cells that have been retrovirally transduced to produce NGF can markedly improve cognitive and neuromotor function and rescue hippocampal CA3 neurons when transplanted into the injured brain during the acute posttraumatic period.


2019 ◽  
Vol 9 (8) ◽  
pp. 204 ◽  
Author(s):  
Marina Sycheva ◽  
Jake Sustarich ◽  
Yuxian Zhang ◽  
Vaithinathan Selvaraju ◽  
Thangiah Geetha ◽  
...  

We have previously shown that the expression of pro-nerve growth factor (proNGF) was significantly increased, nerve growth factor (NGF) level was decreased, and the expression of p75NTR was enhanced in Alzheimer’s disease (AD) hippocampal samples. NGF regulates cell survival and differentiation by binding TrkA and p75NTR receptors. ProNGF is the precursor form of NGF, binds to p75NTR, and induces cell apoptosis. The objective of this study is to determine whether the increased p75NTR expression in AD is due to the accumulation of proNGF and Rho kinase activation. PC12 cells were stimulated with either proNGF or NGF. Pull-down assay was carried out to determine the RhoA kinase activity. We found the expression of p75NTR was enhanced by proNGF compared to NGF. The proNGF stimulation also increased the RhoA kinase activity leading to apoptosis. The expression of active RhoA kinase was found to be increased in human AD hippocampus compared to control. The addition of RhoA kinase inhibitor Y27632 not only blocked the RhoA kinase activity but also reduced the expression of p75NTR receptor and inhibited the activation of JNK and MAPK induced by proNGF. This suggests that overexpression of proNGF in AD enhances p75NTR expression and activation of RhoA, leading to neuronal cell death.


2009 ◽  
Vol 30 (3) ◽  
pp. 461-467
Author(s):  
Hiroyuki Ichikawa ◽  
Bing-Ran Zhao ◽  
Mitsuhiro Kano ◽  
Yoshinaka Shimizu ◽  
Toshihiko Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document