scholarly journals Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial

Author(s):  
S. Bash ◽  
L. Wang ◽  
C. Airriess ◽  
G. Zaharchuk ◽  
E. Gong ◽  
...  
2020 ◽  
Vol 126 ◽  
pp. 218-234 ◽  
Author(s):  
Hossein Shahamat ◽  
Mohammad Saniee Abadeh

Author(s):  
Huanyu Luo ◽  
Tao Zhang ◽  
Nan-Jie Gong ◽  
Jonthan Tamir ◽  
Srivathsa Pasumarthi Venkata ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Hongwei Li ◽  
Aurore Menegaux ◽  
Benita Schmitz‐Koep ◽  
Antonia Neubauer ◽  
Felix J. B. Bäuerlein ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


2021 ◽  
Vol 19 (11) ◽  
pp. 126-140
Author(s):  
Zahraa S. Aaraji ◽  
Hawraa H. Abbas

Neuroimaging data analysis has attracted a great deal of attention with respect to the accurate diagnosis of Alzheimer’s disease (AD). Magnetic Resonance Imaging (MRI) scanners have thus been commonly used to study AD-related brain structural variations, providing images that demonstrate both morphometric and anatomical changes in the human brain. Deep learning algorithms have already been effectively exploited in other medical image processing applications to identify features and recognise patterns for many diseases that affect the brain and other organs; this paper extends on this to describe a novel computer aided software pipeline for the classification and early diagnosis of AD. The proposed method uses two types of three-dimensional Convolutional Neural Networks (3D CNN) to facilitate brain MRI data analysis and automatic feature extraction and classification, so that pre-processing and post-processing are utilised to normalise the MRI data and facilitate pattern recognition. The experimental results show that the proposed approach achieves 97.5%, 82.5%, and 83.75% accuracy in terms of binary classification AD vs. cognitively normal (CN), CN vs. mild cognitive impairment (MCI) and MCI vs. AD, respectively, as well as 85% accuracy for multi class-classification, based on publicly available data sets from the Alzheimer’s disease Neuroimaging Initiative (ADNI).


2020 ◽  
Vol 4 (s1) ◽  
pp. 45-46
Author(s):  
Carol Tran ◽  
Orit Glenn ◽  
Christopher Hess ◽  
Andreas Rauschecker

OBJECTIVES/GOALS: We seek to develop an automated deep learning-based method for segmentation and volumetric quantification of the fetal brain on T2-weighted fetal MRIs. We will evaluate the performance of the algorithm by comparing it to gold standard manual segmentations. The method will be used to create a normative sample of brain volumes across gestational ages. METHODS/STUDY POPULATION: We will adapt a U-Net convolutional neural network architecture for fetal brain MRIs using 3D volumes. After re-sampling 2D fetal brain acquisitions to 3mm3 3D volumes using linear interpolation, the network will be trained to perform automated brain segmentation on 40 randomly-sampled, normal fetal brain MRI scans of singleton pregnancies. Training will be performed in 3 acquisition planes (axial, coronal, sagittal). Performance will be evaluated on 10 test MRIs (in 3 acquisition planes, 30 total test samples) using Dice scores, compared to radiologists’ manual segmentations. The algorithm’s performance on measuring total brain volume will also be evaluated. RESULTS/ANTICIPATED RESULTS: Based on the success of prior U-net architectures for volumetric segmentation tasks in medical imaging (e.g. Duong et al., 2019), we anticipate that the convolutional neural network will accurately provide segmentations and associated volumetry of fetal brains in fractions of a second. We anticipate median Dice scores greater than 0.8 across our test sample. Once validated, the method will retrospectively generate a normative database of over 1500 fetal brain volumes across gestational ages (18 weeks to 30 weeks) collected at our institution. DISCUSSION/SIGNIFICANCE OF IMPACT: Quantitative estimates of brain volume, and deviations from normative data, would be a major advancement in objective clinical assessments of fetal MRI. Such data can currently only be obtained through laborious manual segmentations; automated deep learning methods have the potential to reduce the time and cost of this process.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i20-i21
Author(s):  
Min Zhang ◽  
Geoffrey Young ◽  
Huai Chen ◽  
Lei Qin ◽  
Xinhua Cao ◽  
...  

Abstract BACKGROUND AND OBJECTIVE: Brain metastases have been found to account for one-fourth of all cancer metastases seen in clinics. Magnetic resonance imaging (MRI) is widely used for detecting brain metastases. Accurate detection of the brain metastases is critical to design radiotherapy to treat the cancer and monitor their progression or response to the therapy and prognosis. However, finding metastases on brain MRI is very challenging as many metastases are small and manifest as objects of weak contrast on the images. In this work we present a deep learning approach integrated with a classification scheme to detect cancer metastases to the brain on MRI. MATERIALS AND METHODS: We retrospectively extracted 101 metastases patients, equal to 1535 metastases on 10192 slices of images in a total of 336 scans from our PACS and manually marked the lesions on T1-weighted contrast enhanced MRI as the ground-truth. We then randomly separated the cases into training, validation, and test sets for developing and optimizing the deep learning neural network. We designed a 2-step computer-aided detection (CAD) pipeline by first applying a fast region-based convolutional neural network method (R-CNN) to sequentially process each slice of an axial brain MRI to find abnormal hyper-intensity that may correspond to a brain metastasis and, second, applying a random under sampling boost (RUSBoost) classification method to reduce the false positive metastases. RESULTS: The computational pipeline was tested on real brain images. A sensitivity of 97.28% and false positive rate of 36.25 per scan over the images were achieved by using the proposed method. CONCLUSION: Our results demonstrated the deep learning-based method can detect metastases in very challenging cases and can serve as CAD tool to help radiologists interpret brain MRIs in a time-constrained environment.


2020 ◽  
Vol 14 ◽  
Author(s):  
Chenyi Zeng ◽  
Lin Gu ◽  
Zhenzhong Liu ◽  
Shen Zhao

In recent years, there have been multiple works of literature reviewing methods for automatically segmenting multiple sclerosis (MS) lesions. However, there is no literature systematically and individually review deep learning-based MS lesion segmentation methods. Although the previous review also included methods based on deep learning, there are some methods based on deep learning that they did not review. In addition, their review of deep learning methods did not go deep into the specific categories of Convolutional Neural Network (CNN). They only reviewed these methods in a generalized form, such as supervision strategy, input data handling strategy, etc. This paper presents a systematic review of the literature in automated multiple sclerosis lesion segmentation based on deep learning. Algorithms based on deep learning reviewed are classified into two categories through their CNN style, and their strengths and weaknesses will also be given through our investigation and analysis. We give a quantitative comparison of the methods reviewed through two metrics: Dice Similarity Coefficient (DSC) and Positive Predictive Value (PPV). Finally, the future direction of the application of deep learning in MS lesion segmentation will be discussed.


Author(s):  
Arnab Kumar Maji ◽  
Imayanmosha Wahlang ◽  
Goutam Saha ◽  
Sugata Sanyal ◽  
Pallabi Sharma

Sign in / Sign up

Export Citation Format

Share Document