scholarly journals Energy and Exergy Analysis of LiBr-aq and LiCl-aq Liquid Desiccant Dehumidification System

2020 ◽  
Vol 14 (1) ◽  
pp. 36-40
Author(s):  
Barış KavasoğullarI ◽  
Ertuğrul Cihan ◽  
Hasan Demir

In this study, energy and exergy analysis of experimental results obtained from a dehumidification system using LiBr-aq (lithium bromide-water) and LiCl-aq (lithium chloridewater) as desiccant was made. In dehumidifier and regenerator columns polycarbonate sheets, which have not been used before, were used as packing material to increase contact area in purposed liquid desiccant dehumidification system. In the analysis, variation of electrical coefficient of performance and exergy efficiency with airflow rate for different solution mass flow rates were investigated. Because of investigation, maximum values of electrical coefficient of performance and exergy efficiency were calculated approximately as 2.8 and 18%, respectively.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4470
Author(s):  
Yikai Wang ◽  
Yifan He ◽  
Yulong Song ◽  
Xiang Yin ◽  
Feng Cao ◽  
...  

Given the large demand nowadays for domestic hot water, and its impact on modern building energy consumption, air source transcritical CO2 heat pumps have been extensively adopted for hot water production. Since their system efficiency is limited by significant irreversibility, a CO2-based mixture could offer a promising drop-in technology to overcome this deficiency without increasing system complexity. Although many CO2 blends have been studied in previously published literature, little has been presented about the CO2/R32 mixture. Therefore, a proposed mixture for use in transcritical CO2 heat pumps was analyzed using energy and exergy analysis. Results showed that the coefficient of performance and exergy efficiency variation displayed an “M” shape trend, and the optimal CO2/R32 mixture concentration was determined as 0.9/0.1 with regard to flammability and efficiency. The irreversibility of the throttling valve was reduced from 0.031 to 0.009 kW⋅kW−1 and the total irreversibility reduction was more notable with ambient temperature variation. A case study was also conducted to examine domestic hot water demand during the year. Pure CO2 and the proposed CO2 blend were compared with regard to annual performance factor and annual exergy efficiency, and the findings could provide guidance for practical applications in the future.


Author(s):  
Ahmad Fudholi ◽  
Mariyam Fazleena Musthafa ◽  
Abrar Ridwan ◽  
Rado Yendra ◽  
Ari Pani Desvina ◽  
...  

<span lang="EN-US">Photovoltaic thermal (PVT) collectors convert solar radiation directly to both electrical and thermal energies. A PVT collector basiccaly combines the functions of a flat plate solar collector and those of a PV panel. This review presents thermodinamics fundamentals, descriptions, and previous works conducted on energy and exergy analysis of air based PVT collector. Studies in 2010 to 2018 of the energy and exergy analysis of air based PVT collectors are summarized. The energy and exergy efficiency of air based PVT collector ranges from 31% to 94% and 8.7% to 18%, respectively. In addition, flat plate solar collector is presented. Studies conducted on air based PVT collectors are reviewed.</span>


2017 ◽  
Vol 6 (4) ◽  
pp. 91 ◽  
Author(s):  
Luke Ajuka ◽  
Moradeyo Odunfa ◽  
Olayinka Ohunakin ◽  
Miracle Oyewola

The experimental study investigated the energy and exergy performance of a domestic refrigerator using eco-friendly hydrocarbon refrigerants R600a and LPG (R290/R600a: 50%/50%) at 0, 0.05, 0.15 and 0.3wt % concentrations of 15nm particle size of TiO2 nano-lubricant, and R134a. The effects of evaporator temperature on power consumption, coefficients of performance, exergetic efficiency and efficiency defects in the compressor, condenser, capillary tube and evaporator of the system were examined. The results showed that LPG + TiO2 (0.15wt %) and R600a + TiO2 (0. 15wt %) had the best of performances with an average of 27.6% and 14.3% higher coefficient of Performance, 34.6% and 35.15% lower power consumption, 13.8% and 17.53% higher exergetic efficiency, a total exergetic defect of 45.8% and 64.7% lower compared to R134a. The exergetic defects in the evaporator, compressor, condenser, and capillary tube were 38.27% and 35.5%, 49.19% and 55.56%, 29.7% and 33.7%, 39.1% and 73.8% lower in the system when compared to R134a respectively. Generally, the refrigerants with nano-lubricant mixture gave better results with an appreciable reduction in the exergy defect in the compressor than the pure refrigerants, and LPG + TiO2 (0. 15wt %) gave the best result in the refrigeration system based on energy and exergy analysis.


2014 ◽  
Vol 18 (5) ◽  
pp. 1649-1654 ◽  
Author(s):  
Fang Wang ◽  
Xiao-Wei Fan ◽  
Jie Chen ◽  
Zhi-Wei Lian

An energy and exergy analysis of heat pump with blends of refrigerant mixture R744/R32 was carried out. The coefficient of performance and exergy efficiency of the system were studied with different mass fraction of R744 in the blends and different heat source temperatures. The volumetric heat capacity, condensing pressure, discharge temperature, and compression ratio were also investigated. The results indicate that at a certain concentration (15/85 by mass), the blends achieve better performance, and are superior to those of R22, the results also show that the new refrigerant mixture is an attractive option for promising alternative refrigerant.


Author(s):  
Tomas Kropas ◽  
Giedrė Streckienė

Active solar water heating systems typically include hot water storage tanks. The selection of the storage system strongly affects the performance of the entire system. This article presents a detailed analysis of a hot water storage tank during charging and dynamic charging-discharging mode. A numerical model using computational fluid dynamics for the storage tank was developed to investigate the temperature distribution inside of it. Transient thermal analysis was carried using ANSYS Fluent. The numerical model was validated with the experimental results. The energy and exergy analysis as an important tool for the evaluation of the thermal systems quantitatively and qualitatively was performed. The calculation procedures were described. The energy and exergy efficiencies, heat losses were calculated for steady and dynamic processes. Effect of mass flow rate was analysed. The results from parametric analysis showed that charging dynamics reduced the thermocline and efficiency of the hot water storage tank. The dependency of the exergy efficiency of the heat storage tank on the reference environment temperature during the dynamic operation was analysed. Exergy efficiencies for two cities with different climates were compared. This indicated that the higher envi-ronmental temperature gave lower exergy efficiency of the storage tank.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Isaac N. Simate

The energy and exergy analysis of an indirect-mode natural convection solar dryer for maize grain is presented. Two different sizes of maize grain bed depths of 0.04 m and 0.02 m translating into grain loads of 10 kg and 5 kg respectively, are used in the study to determine their effects on the collector energy and exergy efficiencies and the drying chamber exergy efficiency. Experiments were carried out using an indirect-mode laboratory solar dryer under a solar simulator with a radiation setting of 634.78 W/m2. The analysis gave average collector energy efficiencies of 33.3 % and 46.2 % for the 10 kg and 5 kg loads, respectively, which are higher than the collector exergy efficiencies of 2.4 % and 2.6 % for the 10 kg and 5 kg loads, respectively. The drying chamber exergy efficiencies are 45.2 % and 28.4 % for the 10 kg and 5 kg loads, respectively. In view of this, the 5 kg load is considered to be more efficient at extracting energy from the collector due to higher air flow resulting from its relatively thin grain bed depth of 0.02 m, but less efficient in utilising the extracted energy to evaporate moisture from the grain which has resulted in a lower drying chamber exergy efficiency. Further, the exergy loss in the drying chamber for the 5 kg load is higher than that in the 10 kg load as 72.3 % of the exergy entering the drying chamber is lost through emissions as well as destroyed through internal irreversibility compared to 57.0 % for the 10 kg load.&nbsp;


Author(s):  
Muslizainun Mustapha ◽  
Ahmad Fudholi ◽  
Chan Hoy Yen ◽  
Mohd Hafidz Ruslan ◽  
Kamaruzzaman Sopian

<p class="AEuroAbstract">In photovoltaic thermal hybrid (PV/T) collectors, the electricity and thermal energy are produce simultaneously. PV/T technology has been proven in previous studies where it could give benefits for high energy demand supplementary. For example, in space heating, domestic water heating and also drying. The PVT collectors can be classified into air-based PVT, water-based PVT and dual-fluid (air+water) PVT collector. In this paper, the analysis of energy and exergy efficiency of PVT collectors are compiled and reviewed. This study has found that generally the energy and exergy efficiency are range from 40%-70% and 5%-20%, respectively.</p>


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 415
Author(s):  
Lucas Lima ◽  
Carlos Keutenedjian Mady

In this paper, an energy and exergy analysis is applied to the air dehumidification unit of a liquid desiccant system in an industrial gelatin conveyor dryer. The working fluid is a binary solution of lithium chloride (LiCl) in water. Dry air is used in order to decrease the amount of liquid in the gelatin. Therefore, the environmental air must have its absolute humidity reduced from about 12 g/kg to the project target, which is 5 g/kg. The process is a cycle using an absorption desiccant unit (LiCl in water), where the weak solution absorbs water vapor from the air. In the regenerator, condensation of the solution (desorption) from the moist air occurs. As a result, the steam consumption of the desorber and electrical power used for the vapor compression chiller (with ammonia, NH3, as working fluid) are the primary sources of cost for the factory. To improve the plant’s energy and exergy behaviors, the process is evaluated using a mathematical model of the system processes. In addition, we evaluate the substitution of the vapor compression chiller by an absorption unit (lithium bromide (LiBr) in water). The performance indicators of the compression vapor systems showed the best results. Even when using the condenser’s energy to pre-heat the solution, the installed system proved to be more effective.


Sign in / Sign up

Export Citation Format

Share Document