RPC6 Up-Regulation in Ang II-Induced Podocyte Apoptosis Might Result from ERK Activation and NF-κB Translocation

2009 ◽  
Vol 234 (9) ◽  
pp. 1029-1036 ◽  
Author(s):  
Han Zhang ◽  
Jie Ding ◽  
Qingfeng Fan ◽  
Shufang Liu

Angiotensin II (Ang II) has been recognized as an apoptosis inducer in podocytes, but the mechanism of apoptosis induced by Ang II is unclear. Transient receptor potential cation channel 6 (TRPC6) is a calcium channel located in podocyte membrane. The present study evaluated the alteration of TRPC6 expression and the Ca2+ influx involved in Ang II-induced podocyte apoptosis. The possible pathways related to TRPC6 in Ang II-induced podocyte apoptosis were also investigated. The apoptosis of mouse podocytes (MPC5) was induced by Ang II. The protein level of TRPC6 was increased markedly in response to Ang II stimulation, and the intracellular Ca2+ concentration was elevated. By transfection with TRPC6 siRNA, Ang II-induced podocyte apoptosis and the transient Ca2+ influx were inhibited. Treated with extracellular signal-regulated kinase (ERK) pathway specific inhibitor U0126 or nuclear factor-κB (NF-κB) pathway specific inhibitor ammonium pyrrolidinedithiocarbamate (PDTC) and Ang II, respectively in podocytes, not only was the TRPC6 up-regulation reduced, but the podocyte apoptosis was also decreased. Moreover, the translocation of NF-κB in nucleus resulted from Ang II was reduced by treatment with U0126. In conclusion, the enhancement expression of TRPC6 as well as the increased Ca2+ influx mediated by TRPC6 channels contributed to the podocyte apoptosis. The activation of ERK pathway and subsequent translocation of NF-κB was possibly necessary for the up-regulation TRPC6 induced by Ang II.

2019 ◽  
Author(s):  
Subhransu Sekhar Sahoo ◽  
Rakesh Kumar Majhi ◽  
Ankit Tiwari ◽  
Tusar Acharya ◽  
P Sanjai Kumar ◽  
...  

AbstractTransient Receptor Potential channel subfamily A member 1 (TRPA1) is a non selective cationic channel, identified initially as a cold sensory receptor. TRPA1 responds to diverse exogenous and endogenous stimuli associated with pain and inflammation. However, the role of TRPA1 towards T cell responses remains scanty. In this work, we explored the endogenous expression of TRPA1 in T cells. By RT-PCR we confirmed the expression of TRPA1 in T cell at RNA level. Using confocal microscopy as well as flow cytometry, we demonstrated that TRPA1 is endogenously expressed in primary murine splenic T cells as well as in primary human T cells. The endogenous expression of TRPA1 is confirmed by using another antibody. TRPA1 was primarily located at the cell surface. TRPA1-specific activator namely AITC increases intracellular Ca2+-levels while two different inhibitors namely A-967079 as well as HC-030031 reduce intracellular Ca2+-levels in T cells. Such Ca2+-influx can also be influenced by chelation of intracellular Ca2+ as well as extracellular Ca2+. TRPA1 expression was found to be increased during αCD3/αCD28 (TCR) or ConA driven stimulation in T cells. TRPA1-specific inhibitor treatment prevented induction of CD25, CD69 in ConA/TCR stimulated T cells and secretion of cytokines like TNF, IFN-γ and IL-2 suggesting that endogenous activity of TRPA1 may be involved in T cell activation. Collectively these results may have implication in T cell-mediated responses and possible role of TRPA1 in immunological disorders.


2020 ◽  
Vol 16 ◽  
pp. 174480692092542 ◽  
Author(s):  
Seung Min Shin ◽  
Brandon Itson-Zoske ◽  
Yongsong Cai ◽  
Chensheng Qiu ◽  
Bin Pan ◽  
...  

Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund’s adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.


2002 ◽  
Vol 92 (4) ◽  
pp. 1594-1602 ◽  
Author(s):  
Michele Sweeney ◽  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Shen Zhang ◽  
Ying Yu ◽  
...  

Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents ( I SOC) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+channels by Ni2+ decreased I SOC and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I SOC, enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.


2001 ◽  
Vol 280 (5) ◽  
pp. L870-L880 ◽  
Author(s):  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Jian Wang ◽  
Ying Yu ◽  
Michele Sweeney ◽  
...  

Agonist-induced increases in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery (PA) smooth muscle cells (SMCs) consist of a transient Ca2+ release from intracellular stores followed by a sustained Ca2+ influx. Depletion of intracellular Ca2+ stores triggers capacitative Ca2+ entry (CCE), which contributes to the sustained increase in [Ca2+]cyt and the refilling of Ca2+ into the stores. In isolated PAs superfused with Ca2+-free solution, phenylephrine induced a transient contraction, apparently by a rise in [Ca2+]cyt due to Ca2+ release from the intracellular stores. The transient contraction lasted for 3–4 min until the Ca2+ store was depleted. Restoration of extracellular Ca2+ in the presence of phentolamine produced a contraction potentially due to a rise in [Ca2+]cyt via CCE. The store-operated Ca2+ channel blocker Ni2+ reduced the store depletion-activated Ca2+ currents, decreased CCE, and inhibited the CCE-mediated contraction. In single PASMCs, we identified, using RT-PCR, five transient receptor potential gene transcripts. These results suggest that CCE, potentially through transient receptor potential-encoded Ca2+ channels, plays an important role in agonist-mediated PA contraction.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Rhéure Alves-Lopes ◽  
Augusto C Montezano ◽  
Karla B Neves ◽  
Aikaterini Anagnostopoulou ◽  
Silvia Lacchini ◽  
...  

The transient receptor potential melastatin 2 cation channel (TRPM2) is redox-sensitive and promotes Ca 2+ influx after H 2 O 2 activation through oxidative modification and PARP-ADPR-dependent mechanisms. TRPM2 also regulates Na + influx, and by increasing [Na + ]i interferes with the Na + -Ca 2+ exchanger (NCX) inducing reverse mode action, promoting Ca 2+ influx. These processes may be driven by Nox4-derived H 2 O 2. We tested the hypothesis that vascular dysfunction in hypertension involves oxidative stress-induced TRPM2 activation through H 2 O 2 production, which in turn promotes Ca 2+ influx. Mesenteric arteries isolated from wildtype (WT), LinA3 (mice expressing human renin with Ang II-dependent hypertension), Nox4 -/- and LinA3/Nox4 -/- mice and vascular smooth muscle cells (VSMCs) from hypertensive and normotensive patients were used. Arteries from hypertensive LinA3 mice, exhibit increased U46619-induced vasoconstriction versus WT mice (Emax - LinA3 vs WT: 9.37 ± 0.51 vs 6.79 ± 0.29), an effect attenuated by olaparib (PARP-ADPR inhibitor) and 2-APB (TRPM2 blocker) and also increased mRNA expression (Fold change - related to control) of NOX4 (3.05 ± 0.30), TRPM2 (1.38 ± 0.24), NCX (1.973 ± 0.34) and salt inducible kinase 1 (1.833 ± 0.12) and sodium-potassium pump (1.43 ± 0.16), which are activated when intracellular levels of Na + rise beyond a critical point. These events seem to be regulated by NOX4, since they were not observed in mesenteric arteries from LinA3/Nox4 -/- mice. Ang II-induced Ca 2+ influx is potentiated in VSMCs from hypertensive patients (AUC-Ex490/Em535: normotensive: 15400±917.5 vs hypertensive - 22460±2388), a response followed by increased generation of O 2 - and H 2 O 2 in cells from hypertensive patients. These ROS effects were attenuated by catalase, and 2-APB, 8-br and olaparib (TRPM2 inhibitors) and benzamil, KB-R7943 and YM244769 (NCX inhibitors). Our data indicate that TRPM2 ion channel activation contributes to redox-sensitive vascular dysfunction in hypertension. These findings suggest that dysregulation of TRPM2-NOX4-derived ROS and NCX may contribute to redox- and Ca 2+ signalling important in vascular function in hypertension. TRPM2 may be a point of cross-talk between ROS and Ca 2+ signalling.


2001 ◽  
Vol 280 (5) ◽  
pp. C1193-C1203 ◽  
Author(s):  
Laura Valencia ◽  
Michel Bidet ◽  
Sonia Martial ◽  
Elsa Sanchez ◽  
Estela Melendez ◽  
...  

To characterize Ca2+ transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca2+concentration ([Ca2+]i) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 μM) produced an increase in [Ca2+]i from 87.6 ± 3.3 nM to 389.9 ± 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca2+]i in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca2+]i. Experiments in the presence of EGTA showed that external Ca2+ was required for the nifedipine effect, while lanthanum (20 μM), gadolinium (100 μM), and diltiazem (20 μM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K+ channels were not involved in the nifedipine-induced [Ca2+]i rise. H2O2also triggered [Ca2+]i rise. However, nifedipine-induced [Ca2+]i increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca2+transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca2+ channel of capacitive type (either transient receptor potential or leak channel).


2004 ◽  
Vol 287 (2) ◽  
pp. C357-C364 ◽  
Author(s):  
Xiaoxia Wang ◽  
Jennifer L. Pluznick ◽  
Peilin Wei ◽  
Babu J. Padanilam ◽  
Steven C. Sansom

Studies were performed to identify the molecular component responsible for store-operated Ca2+ entry in murine mesangial cells (MMC). Because the canonical transient receptor potential (TRPC) family of proteins was previously shown to comprise Ca2+-selective and -nonselective cation channels in a variety of cells, we screened TRPC1–TRPC7 with the use of molecular methods and the fura 2 method to determine their participation as components of the mesangial store-operated Ca2+ (SOC) channel. Using TRPC-specific primers and RT-PCR, we found that cultured MMC contained mRNA for TRPC1 and TRPC4 but not for TRPC2, TRPC3, TRPC5, TRPC6, and TRPC7. Immunocytochemical staining of MMC revealed predominantly cytoplasmic expression of TRPC1 and plasmalemmal expression of TRPC4. The role of TRPC4 in SOC was determined with TRPC4 antisense and fura 2 ratiometric measurements of intracellular Ca2+ concentration ([Ca2+]i). SOC was measured as the increase in [Ca2+]i after extracellular Ca2+ was increased from <10 nM to 1 mM in the continued presence of thapsigargin. We found that TRPC4 antisense, which reduced plasmalemmal expression of TRPC4, inhibited SOC by 83%. Incubation with scrambled TRPC4 oligonucleotides did not affect SOC. Immunohistochemical staining identified expressed TRPC4 in the glomeruli of mouse renal sections. The results of RT-PCR performed to distinguish between TRPC4-α and TRPC4-β were consistent with expression of both isoforms in brain but with only TRPC4-α expression in MMC. These studies show that TRPC4-α may form the homotetrameric SOC in mouse mesangial cells.


2007 ◽  
Vol 292 (3) ◽  
pp. H1390-H1397 ◽  
Author(s):  
Sean P. Marrelli ◽  
Roger G. O'Neil ◽  
Rachel C. Brown ◽  
Robert M. Bryan

We previously demonstrated that endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in cerebral arteries are significantly reduced by inhibitors of PLA2. In this study we examined possible mechanisms by which PLA2 regulates endothelium-dependent dilation, specifically whether PLA2 is involved in endothelial Ca2+ regulation through stimulation of TRPV4 channels. Studies were carried out with middle cerebral arteries (MCA) or freshly isolated MCA endothelial cells (EC) of male Long-Evans rats. Nitro-l-arginine methyl ester (l-NAME) and indomethacin were present throughout. In pressurized MCA, luminally delivered UTP produced increased EC intracellular Ca2+ concentration ([Ca2+]i) and MCA dilation. Incubation with PACOCF3, a PLA2 inhibitor, significantly reduced both EC [Ca2+]i and dilation responses to UTP. EC [Ca2+]i was also partially reduced by a transient receptor potential vanilloid (TRPV) channel blocker, ruthenium red. Manganese quenching experiments demonstrated Ca2+ influx across the luminal and abluminal face of the endothelium in response to UTP. Interestingly, PLA2-sensitive Ca2+ influx occurred primarily across the abluminal face. Luminal application of arachidonic acid, the primary product of PLA2 and a demonstrated activator of certain TRPV channels, increased both EC [Ca2+]i and MCA diameter. TRPV4 mRNA and protein was demonstrated in the endothelium by RT-PCR and immunofluorescence, respectively. Finally, application of 4α-phorbol 12,13-didecanoate (4αPDD), a TRPV4 channel activator, produced an increase in EC [Ca2+]i that was significantly reduced in the presence of ruthenium red. We conclude that PLA2 is involved in EC Ca2+ regulation through its regulation of TRPV4 channels. Furthermore, the PLA2-sensitive component of Ca2+ influx may be polarized to the abluminal face of the endothelium.


Sign in / Sign up

Export Citation Format

Share Document