LANE-TRACKING CONTROL PERFORMANCE OF FOUR-WHEEL-STEERING AUTOMOBILE

2002 ◽  
Vol 35 (1) ◽  
pp. 385-390
Author(s):  
Pongsathorn Raksincharoensak ◽  
Hiroshi Mouri ◽  
Masao Nagai
2001 ◽  
Author(s):  
Masao Nagai ◽  
Hidehisa Yoshida ◽  
Kiyotaka Shitamitsu ◽  
Hiroshi Mouri

Abstract Although the vast majority of lane-tracking control methods rely on the steering wheel angle as the control input, a few studies have treated methods using the steering torque as the input. When operating vehicles especially at high speed, drivers typically do not grip the steering wheel tightly to prevent the angle of the steering wheel from veering off course. This study proposes a new steering assist system for a driver not with the steering angle but the steering torque as the input and clarifies the characteristics and relative advantages of the two approaches. Then using a newly developed driving simulator, characteristics of human drivers and the lane-tracking system based on the steering torque control are investigated.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Xuan Phu Do ◽  
Kruti Shah ◽  
Seung-Bok Choi

This paper presents a new direct adaptive fuzzy controller and its effectiveness is verified by investigating the damping force tracking control of magnetorheological (MR) fluid based damper (MR damper in short) system. In the formulation of the proposed controller, a model of interval type 2 fuzzy controller is combined with the direct adaptive control to achieve high performance in vibration control. In addition,H∞(Hinfinity) tracking technique is used in building a model of the direct adaptive fuzzy controller in which an enhanced iterative algorithm is combined with the fuzzy model. After establishing a closed-loop control structure to achieve high control performance, a cylindrical MR damper is adopted and damping force tracking results are obtained and discussed. In addition, in order to demonstrate the effectiveness of the proposed control strategy, two existing controllers are modified and tested for comparative work. It has been demonstrated from simulation and experiment that the proposed control scheme provides much better control performance in terms of damping force tracking error. This leads to excellent vibration control performance of the semiactive MR damper system associated with the proposed controller.


Author(s):  
Jens Becker ◽  
Thomas Kra¨mer ◽  
Lothar Gaul

Piezoelectric materials are known to exhibit nonlinear effects if they are operated outside their linear small-signal regime, which significantly degrades the performance of structural control concepts. In this contribution, these nonlinear effects are experimentally investigated in the context of a feedforward control application, where a control command is designed to steer the tip of a cantilever beam by means of a piezoelectric patch actuator from initial to a prescribed desired final stationary deflection. As expected, the encountered nonlinear effects degrade the control performance with increasing applied electrical field. Hence, a modified feedforward control design procedure is proposed. The overall nonlinear system model is recast in a series connection of an input nonlinearity and the linear dynamics of the mechanical structure, which the feedforward control to be designed in two steps: First, a feedforward control for the linear model part is derived based on an approach exploting the notion of flatness in combination with modal analysis of the linear dynamics. It uses the finite-element method to derive the linear dynamics of the piezoelectric structure. Secondly, an inverse filter is designed to compensate for the nonlinear piezoelectric hysteresis and creep effects. By insertion of this inverse filter at the system input, i.e. by filtering the feedforward control, very good tracking control performance is recovered in both small and large-signal operation of the piezoelectric actuator. This filter itself is derived by inversion of a model of the nonlinearities in the discrete-time domain. The chosen model for the hysteresis is based on polynomial approximations of the hysteresis loops, appropriate scaling of these loops to the actual point of operation by keeping track of the input signal reversals and on implementation of the physically motivated Madelung rules that the piezoelectric hysteresis obeys. The creep is found to behave according to a Kelvin-Voigt viscoelastic model. Various experiments for the piezoelectrically actuated beam show that the modified feedforward control design yields very good tracking performance also outside of the small-signal regime by application of the compensation filter. The excellent feedforward tracking control performance predicted by simulations of the full (linear) finite-element model is verified. The designed feedforward control realizes very fast rest-to-rest transition in less than half of the period of the first structural mode. As an interesting application of such a feedforward control, a two-degree-of-freedom control concept combining the presented feedforward control and additional feedback control is investigated. By use of the feedforward control, the feedback can be relatively simple because it is only responsible for disturbance rejection and adding robustness.


Author(s):  
Dehua Zhang ◽  
Caijin Yang ◽  
Weihua Zhang ◽  
Yao Cheng

To achieve the running control of the all-wheel-driving and active-steering articulated vehicles (AWDASAVs) with n-units, an adaptive tracking control method is proposed in this paper, which includes a real-time target trajectory generation and an adaptive tracking control system. Firstly, the AWDASAV kinematics model is derived, and then the front-axle trace as the target trajectory is computed for all rear-axle steering by using data compressing and filtering, coordinate transformation, and local spline differences, which has small data storage and high computational efficiency and makes it easier to use in AWDASAV. Secondly, an adaptive tracking control system composed of an adaptive active steering controller and a differential distribution controller is designed to achieve accurate trajectory tracking and coordinated movement for AWDASAV. Finally, the AWDASAV simulation model with five-units was built in ADAMS by code development for cross-validation simulation, and the simulations with two cases at various speeds are carried out to verify the simulation model and control method. To further investigate the proposed method, the influence of three parameters on the tracking control performance and comparison with different control methods are carried out. The results exhibit excellent tracking control performance.


2016 ◽  
Vol 28 (3) ◽  
pp. 304-313 ◽  
Author(s):  
Reesa Akbar ◽  
◽  
Bambang Sumantri ◽  
Hitoshi Katayama ◽  
Shigenori Sano ◽  
...  

[abstFig src='/00280003/05.jpg' width=""230"" text='Quadcopter for repeated control verification' ] The reduced-order observer design we present estimates the velocity states of a quadrotor helicopter, or quadcopter, based on sampled measurements of position and attitude states. This observer is based on the forward-differentiation Euler model. The observer is robust enough against observation noise that the gain of a closed-loop controller is high enough to improve control performance. A sliding-mode controller stabilizes and implements quadcopter tracking control effectively, as is verified experimentally when compared to a conventional backward-difference method.


Sign in / Sign up

Export Citation Format

Share Document