scholarly journals Global and Local Path Planning of MicroIV for Traffic Flow Modeling and Simulation

2013 ◽  
Vol 46 (13) ◽  
pp. 502-507
Author(s):  
Lindong GUO ◽  
Ming YANG ◽  
Zhengchen LU ◽  
Bing WANG ◽  
Chunxiang WANG
2021 ◽  
Vol 193 ◽  
pp. 107913
Author(s):  
Yuan Tang ◽  
Yiming Miao ◽  
Ahmed Barnawi ◽  
Bander Alzahrani ◽  
Reem Alotaibi ◽  
...  

2018 ◽  
Vol 15 (5) ◽  
pp. 172988141880472 ◽  
Author(s):  
Mohammed AH Ali ◽  
Musa Mailah

A novel technique called laser simulator approach for visibility search graph-based path planning has been developed in this article to determine the optimum collision-free path in unknown environment. With such approach, it is possible to apply constraints on the mobile robot trajectory while navigating in complex terrains such as in factories and road environments, as the first work of its kind. The main advantage of this approach is the ability to be used for both global/local path planning in the presence of constraints and obstacles in unknown environments. The principle of the laser simulator approach with all possibilities and cases that could emerge during path planning is explained to determine the path from initial to destination positions in a two-dimensional map. In addition, a comparative study on the laser simulator approach, A* algorithm, Voronoi diagram with fast marching and PointBug algorithms was performed to show the benefits and drawbacks of the proposed approach. A case study on the utilization of the laser simulator in both global and local path planning has been applied in a road roundabout setting which is regarded as a complex environment for robot path planning. In global path planning, the path is generated within a grid map of the roundabout environment to select the path according to the respective road rules. It is also used to recognize the real roundabout from a sequence of images during local path planning in the real-world system. Results show that the performance of the proposed laser simulator approach in both global and local environments is achieved with low computational and path costs, in which the optimum path from the selected start position to the goal point is tracked accordingly in the presence of the obstacles.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1488
Author(s):  
Federico Peralta ◽  
Mario Arzamendia ◽  
Derlis Gregor ◽  
Daniel G. Reina ◽  
Sergio Toral

Local path planning is important in the development of autonomous vehicles since it allows a vehicle to adapt their movements to dynamic environments, for instance, when obstacles are detected. This work presents an evaluation of the performance of different local path planning techniques for an Autonomous Surface Vehicle, using a custom-made simulator based on the open-source Robotarium framework. The conducted simulations allow to verify, compare and visualize the solutions of the different techniques. The selected techniques for evaluation include A*, Potential Fields (PF), Rapidly-Exploring Random Trees* (RRT*) and variations of the Fast Marching Method (FMM), along with a proposed new method called Updating the Fast Marching Square method (uFMS). The evaluation proposed in this work includes ways to summarize time and safety measures for local path planning techniques. The results in a Lake environment present the advantages and disadvantages of using each technique. The proposed uFMS and A* have been shown to achieve interesting performance in terms of processing time, distance travelled and security levels. Furthermore, the proposed uFMS algorithm is capable of generating smoother routes.


Sign in / Sign up

Export Citation Format

Share Document