Analyses of carbohydrates and lignin in the surface and inner layers of softwood pulp fibers obtained employing various alkaline cooking processes

2002 ◽  
Vol 17 (3) ◽  
pp. 295-301 ◽  
Author(s):  
John Sjöberg ◽  
Marjatta Kleen ◽  
Olof Dahlman ◽  
Roland Agnemo
Keyword(s):  
2012 ◽  
Vol 7 (2) ◽  
pp. 155892501200700 ◽  
Author(s):  
Kristoffer Lund ◽  
Karin Sjöström ◽  
Harald Brelid

The importance of hemicelluloses for the papermaking properties of pulp fibers is well documented. In the patent literature, it can be seen that there is also an interest in this type of modification of pulp fibers for use in absorption products. In this study, a Scandinavian softwood kraft pulp and a birch kraft pulp were alkali extracted at 3 different concentrations of NaOH (2%, 4% and 8% NaOH in the suspension). The alkali extraction removed a large part of the hemicelluloses from the pulp fibers and decreased the content of the charged groups. After extraction, the pulps were dried in the form of sheets (approx. 600 g/m2). The alkali extracted pulp fibers exhibited a greater decrease in swelling when re-wetted than untreated pulp. A significant increase in the curl index after extraction with 4% and 8% NaOH was also noted. The tensile strength index of the formed sheets increased at the lowest concentration of NaOH and, at the higher concentrations, a decrease was observed. The pulp sheets were dry defibrated at different defibration intensities and the performance of the resulting pulps in fluff pulp applications was studied. The air-laid fiber networks of softwood pulp fibers showed higher network strength than the networks of birch pulps. The birch pulp extracted at the highest alkali level tended to give the highest network strength. The results from the network strength tests also indicated that the increased curl of the fibers from the softwood pulp extracted at the highest alkali level rendered a more flexible fiber network. In water absorption tests, the alkali treated softwood fibers tended to give networks with a somewhat enhanced water holding capacity under pressure.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (4) ◽  
pp. 241-251
Author(s):  
HO-GYUNG GU ◽  
BYUNG-GUL MIN ◽  
JI-YOUNG LEE ◽  
SEE-HAN PARK ◽  
MIN-SEOK LEE ◽  
...  

Refiner plates made using sand casting have a draft angle, which results in a trapezoidal bar shape. These trapezoidal bar plates have a limited throughput compared to the vertical bar plates, and eventually the edges of the bars become dull, resulting in longer time to reach the target freeness and shorter service life. The new light-weight refiner plate with a bar insertion method into a plate base was developed by selecting an aluminium-based alloy as the plate base material and a stainless steel alloy with high wear resistance as the bar material. The light-weight plate with sharp bar edges was very effective in reducing refining energy by reaching the target freeness faster than the sand-cast bar plate. Finally, the lightweight sharp bar plate, which weighed only about half the weight of the cast bar plate, was expected to significantly contribute to easy replacement, improved paper quality, and larger throughput without excessive loss of fiber length.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (9) ◽  
pp. 553-563
Author(s):  
MD. MOSTAFIZUR RAHMAN ◽  
FRANTISEK POTUCEK

This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.


Cellulose ◽  
2018 ◽  
Vol 26 (3) ◽  
pp. 1995-2012 ◽  
Author(s):  
Jarmo Kouko ◽  
Marina Jajcinovic ◽  
Wolfgang Fischer ◽  
Annika Ketola ◽  
Ulrich Hirn ◽  
...  
Keyword(s):  

TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 9-19 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART

Brownstock washing is a complex, dynamic process in which dirty wash water or weak black liquor (dissolved organic and inorganic material obtained from the pulp cooking process) is separated from pulp fibers. The use of material balance techniques is of great importance to identify potential problems and determine how well the system is operating. The kraft pulping industry was the first known to combine pulp washing with the recovery of materials used and produced in the wood cooking process. The motivation behind materials recovery is economic, and more recently, environmentally driven. The chemicals used in the kraft process are expensive as compared to those used in the sulfite process. For the kraft process to be economically viable, it is imperative that a very high percentage of the cooking chemicals be recovered. To reach such high efficiency, a variety of washing systems and monitoring parameters have been developed. Antifoam additives and processing aids have also played an important role in increasing washing effectiveness. Antifoam materials help attain washing effectiveness by preventing entrapped air from forming in the system, which allows for an easier, unimpeded flow of filtrate through the screens and washers.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 643-651 ◽  
Author(s):  
ROBERT J. OGLESBY ◽  
HUMPHREY J. MOYNIHAN ◽  
RICARDO B. SANTOS ◽  
ASHOK GHOSH ◽  
PETER W. HART

The impact of commercially prepared, fully bleached pulp viscosity variation on handsheet physical properties was evaluated at different levels of pulp refining. Hardwood pulps from the same brownstock species mix, cooking parameters, and kappa numbers were processed through two different commercial bleach plants: one with a D0(EP)D1D2 sequence and the second with an OD0(EOP)D1 sequence. Additionally, a commercial softwood (predominately Scotts pine) brownstock pulp bleached by an OD0(EP)D1D2 sequence was employed in this study. Pulps with viscosities ranging from 14 to 21 mPa∙s were refined in a Valley beater to two freeness levels, and the associated handsheet physical properties were measured in this study. Over the pulp viscosity range of 14 to 21 mPa∙s, no clear correlation was found to exist between pulp viscosity and related paper physical properties. Finally, a series of laboratory prepared bleached pulps were purposely prepared under non-ideal conditions to reduce their final viscosities to lower values. Handsheets made from these pulps were tested in their unbeaten condition for physical strength properties. Significant and rapid strength loss occurred when the measured pulp viscosity dropped below 12 mPa∙s; overall strength properties showed no correlation to viscosity above the critical 12 mPa∙s value.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (4) ◽  
pp. 233-241
Author(s):  
CHENGGUI SUN ◽  
RICHARD CHANDRA ◽  
YAMAN BOLUK

This study investigates the use of pretreatment and enzymatic hydrolysis side streams and conversion to lignocellulose nanofibers. We used a steam-exploded and partial enzymatic hydrolyzed hardwood pulp and an organosolv pretreated softwood pulp to prepare lignocellulose nanofibers (LCNF) via microfluidization. The energies applied on fibrillation were estimated to examine the energy consumption levels of LCNF production. The energy consumptions of the fibrillation processes of the hardwood LCNF production and the softwood LCNF production were about 7040-14080 kWh/ton and 4640 kWh/ton on a dry material basis, respectively. The morphology and dimension of developed hardwood and softwood LCNFs and the stability and rheological behavior of their suspensions were investigated and are discussed.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 939-951 ◽  
Author(s):  
Clifton F. Warren ◽  
R. Gehr

The adsorption and desorption behaviour of a cationic polyelectrolyte contacted with wood pulp fibers was determined by total nitrogen analysis using a pyrolysis/chemiluminescence detection system. Dialysed polymer generated an adsorption isotherm of higher affinity than did non-dialysed polymer. Capacity adsorption was maximized at pH 7, but decreased in the presence of alum depending on the dosage. Desorption of non-dialysed polymer was caused by changes in pH above or below 7.0 as well as by addition of alum. However for the alum doses typically encountered in paper manufacturing, significant desorption is unlikely. Nevertheless, the contaminants in non-dialysed polymers do hinder adsorption, and effluents from those processes using both alum and polymer may contain quantities of unadsorbed or desorbed polyelectrolytes which could be damaging to receiving water bodies.


Sign in / Sign up

Export Citation Format

Share Document