scholarly journals KOMPARASI PERPINDAHAN PANAS (HEAT TRANSFER) MATERIAL DINDING DENGAN SIMULASI THERM

2021 ◽  
Vol 5 (1) ◽  
pp. 77
Author(s):  
Aria Zabdi Alias Dian Pandu ◽  
LMF Purwanto

Abstract: Understanding materials heat transfer ease designers to make decisions in design stages, related to materials, costs and comfort to be achieved. Nowadays, understanding heat transfer does not have to be done by performing complex calculations, many simulation software have been created to perform heat transfer analysis with a friendly user interface. Moreover, the output of heat transfer simulation and analysis produces images that are easier to understand visually, such as flux vector displays, temperature boundaries to infrared color grading that make it easier for users to read the simulation results. THERM is a heat transfer simulation software developed by the Lawrence Berkeley National Laboratory, University of California in collaboration with the US Department of Energy. With the license-free usage, this software has the potential to be used optimally by designers and academics who have an interest in heat transfer analysis. This research is expected to provide an overview of the potential use of THERM software for modeling and analysis of heat transfer. The THERM software can be a good alternative for conducting research for academics and practitioners alike, given its ease of use, free licensing and accuracy. THERM produces simulation output with detailed and easy-to-understand visualizations. In testing with simulation, it is found that the material with the lowest density and thermal conductivity has the highest heat insulation power. Walls with light brick material show a significant effect in heat insulation compared to walls with concrete brick and red brick (fire-brick) material.Abstrak: Memahami perpindahan panas pada material mempermudah perancang untuk mengambil sebuah keputusan dalam perancangan, terkait dengan material, biaya dan kenyamanan yang akan dicapai. Dewasa ini, pemahaman terhadap perpindahan panas tidak harus dilakukan dengan melakukan perhitungan yang kompleks, banyak perangkat lunak simulasi telah diciptakan untuk melakukan analisis terhadap perpindahan panas dengan antar muka pengguna (user interface) yang bersahabat. Lebih dari itu output dari simulasi dan analisis perpindahan panas menghasilkan citra yang lebih mudah dipahami secara visual, seperti tampilan vector flux, garis batasan temperatur hingga infrared color grading yang mempermudah pengguna dalam membaca hasil simulasi. THERM adalah salah satu perangkat lunak simulasi perpindahan panas yang dikembangkan oleh Lawrence Berkeley National Laboratory, University of California bekerja sama dengan US Department of Energy. Dengan penggunaan bebas lisensi (tidak berbayar), perangkat lunak ini berpotensi untuk digunakan secara maksimal oleh perancang maupun akademisi yang memiliki minat terhadap analisis perpindahan panas. Penelitian ini diharapkan memberikan gambaran potensi penggunaan perangkat lunak THERM untuk melakukan pemodelan dan analisis perpindahan panas. Perangkat lunak THERM dapat menjadi alternatif yang baik untuk melakukan penelitian bagi akademisi maupun praktisi, mengingat kemudahan pemakaian, lisensi tidak berbayar dan keakuratan yang diberikan. THERM menghasilkan output simulasi dengan visualisasi yang detail dan mudah dipahami. Dalam pengujian dengan simulasi, didapat bahwa material dengan berat jenis dan nilai konduktivitas termal terendah memiliki daya insulasi panas tertinggi. Dinding dengan material bata ringan menunjukkan efek signifikan dalam menginsulasi panas dibandingkan dengan dinding dengan material batako maupun bata merah.

2012 ◽  
Vol 157-158 ◽  
pp. 901-906
Author(s):  
Dong Jie Wang ◽  
Zheng Xing Zuo

This paper presents the heat transfer simulation of a new kind of rotary engine called Leaf Spring Rotary Engine. The structure and the principle of the prototype engine were introduced. The thermodynamic models including heat transfer model were presented. The contrast of the performance parameters between the heat transfer condition and the ideal condition was presented and the effect of the heat transfer to the performance of the engine was analyzed. It showed that the heat transfer loss would account for 24% of the input energy at the rated speed of 3000r/min. At the same time, the effect of ignition position to the performance of the engine was analyzed. The work would be used in the combustion system design and the performance optimization.


2013 ◽  
Vol 680 ◽  
pp. 402-405
Author(s):  
Zheng Shun Wang ◽  
Zhao Hui Zhen

By use of ANSYS software, Without coated high temperature resistant coating and coated with high temperature resistant paint two model to simulate heat transfer analysis, so as to explore the preparation of the high temperature resistant coating insulation heat preservation effect.


2020 ◽  
Author(s):  
Grant L. Hawkes

Abstract The AGR-5/6/7 experiment is currently being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory and is approximately 70% complete. Several fuel and material irradiation experiments have been planned for the U.S. Department of Energy Advanced Gas Reactor Fuel Development and Qualification Program, which supports the development and qualification of tristructural isotropic (TRISO)-coated particle fuel for use in high-temperature gas-cooled reactors. The goals of these experiments are to provide irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, support development of fuel performance models and codes, and provide irradiated fuel and materials for post-irradiation examination and safety testing. Originally planned and named as separate fuel experiments, but subsequently combined into a single test train, AGR-5/6/7 is testing low-enriched uranium oxycarbide TRISO fuel. The AGR-5/6/7 test train has five capsules with thermocouples and independent gas control mixtures. Unique to this paper is a sensitivity study concerning the cylindricity of the graphite holders containing the fuel compacts and their eccentricity in relation to the stainless-steel capsule walls. Each capsule has small nubs on the outside used for centering the graphite holder inside the stainless-steel capsule with a small gas gap used to control temperature. Due to machining tolerances of these nubs, and vibration wearing the nubs down when the experiment is running in the reactor, the possibility exists that the holder may move around radially. Each capsule is equipped with several thermocouples placed at various radii and depths within each graphite holder. This paper will show the sensitivity of offsetting the graphite holder for various radii in 45-degree increments around the circle with the objective of minimizing the difference between the measured thermocouples and the modeled thermocouple temperatures. Separate gas mixtures of helium/neon are introduced into this gas gap between the holder and capsule wall and changed as necessary to maintain the desired thermocouple temperatures to keep the fuel compacts at a constant temperature as the nuclear reactor conditions change. The goal of the sensitivity study is to find a radius and an angle to offset the holder from perfectly centered for each of the five capsules separately. The complex thermal model includes fission heating, gamma heating, radiation heat transfer, and heat transfer via conduction and radiation across the control gaps. Subroutines linked to the thermal model offer an easy method to offset the graphite holder from the capsule walls without remeshing the entire model.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 309
Author(s):  
Lin Lin ◽  
Hao Wu ◽  
Liwei Xue ◽  
Hao Shen ◽  
Haibo Huang ◽  
...  

An electrothermal microgripper is an important actuator in microelectromechanical and micro-operating systems, and its temperature field analysis is the core problem in research and design. Because of the small size of an electrothermal microgripper, its microscale heat transfer characteristics are different from those of the macrostate. At present, only a few studies on the heat transfer scale effect in electrothermal microgrippers have been conducted, and the heat transfer analysis method under the macrostate is often used directly. The temperature field analysed and simulated is different from the actual situation. In the present study, the heat transfer mechanism of an electrothermal microgripper in the microscale was analysed. The temperature field of a series of microscale heating devices was measured using microthermal imaging equipment, and the heat transfer parameters of the microscale were fitted. Results show that the natural convective heat transfer coefficient of air on the microscale can reach 60–300 times that on the macroscale, which is an important heat transfer mode affecting the temperature field distribution of the electrothermal microgripper. Combined with the finite element simulation software, the temperature field of the electrothermal microgripper could be accurately simulated using the experimental microscale heat transfer parameters measured. This study provides an important theoretical basis and data support for the optimal design of the temperature controller of the electrothermal microgripper.


Author(s):  
Shuhui Li ◽  
Rajab Challoo ◽  
Robert A. McLauchlan

Heat transfer considerations are important in almost all areas of technology. However, heat transfer analysis can be very difficult for complicated systems such as very large-scale integrated (VLSI) electric circuits and systems, making the simulation an attractive technique for studying heat transfer of those systems. This paper presents methods of heat transfer simulation using PSpice. First, typical heat transfer modes are discussed and heat transfer equations are presented. Then, equivalent electrical models are developed, and PSpice representations of those models are investigated. Finite-difference RC network models are developed and used for the simulation of complicated heat transfer problems using PSpice. Two typical heat transfer examples are studied. Simulations are performed to investigate and study the heat transfer and energy flow of the two examples using PSpice.


2012 ◽  
Vol 538-541 ◽  
pp. 2071-2076 ◽  
Author(s):  
Qiang Liu ◽  
Wei Feng Xue ◽  
Jian Wu Yan ◽  
Deng Fu Chen ◽  
Jian Feng Ma

A 2D mathematical Model for heat transfer during solidification in the secondary cooling was established on researching the process of beam blank continuous casting. Meanwhile, the boundary conditions of heat transfer was subdivided into four parts, which is the radiation, spray cooling, heat conduction through roller and water accumulated evaporation in secondary cooling zoon, and improved the results accuracy. Moreover, heat transfer simulation software was designed and developed by a 2D mathematical Model based on FLUENT. The secondary development language UDF (User Define Function) and Scheme (a dialect of LISP) of FLUENT were used during the development. The software provided a platform for researching on the solidification and optimization of a secondary cooling system for a caster machine of beam blank.


Sign in / Sign up

Export Citation Format

Share Document