scholarly journals Peculiarities of pore initiation in р-type silicon during its electrochemical etching

2019 ◽  
Vol 487 (1) ◽  
pp. 32-35
Author(s):  
E. N. Abramova ◽  
A. M. Khort ◽  
A. G. Yakovenko ◽  
Yu. V. Syrov ◽  
V. N. Tsigankov ◽  
...  

Peculiarities of porous silicon layers formation during electrochemical etching of p-type silicon were studied. Principal divisions of pore formation mechanisms in n-type and p-type of silicon were demonstrated.

2021 ◽  
Vol 10 (1) ◽  
pp. 016003
Author(s):  
Philip Nathaniel Immanuel ◽  
Chao-Ching Chiang ◽  
Tien-Hsi Lee ◽  
Sikkanthar Diwan Midyeen ◽  
Song-Jeng Huang

2012 ◽  
Vol 584 ◽  
pp. 290-294 ◽  
Author(s):  
Jeyaprakash Pandiarajan ◽  
Natarajan Jeyakumaran ◽  
Natarajan Prithivikumaran

The promotion of silicon (Si) from being the key material for microelectronics to an interesting material for optoelectronic application is a consequence of the possibility to reduce its device dimensionally by a cheap and easy technique. In fact, electrochemical etching of Si under controlled conditions leads to the formation of nanocrystalline porous silicon (PS) where quantum confinement of photo excited carriers and surface species yield to a band gap opening and an increased radiative transition rate resulting in efficient light emission. In the present study, the nanostructured PS samples were prepared using anodic etching of p-type silicon. The effect of current density on structural and optical properties of PS, has been investigated. XRD studies confirm the presence of silicon nanocrystallites in the PS structure. By increasing the current density, the average estimated values of grain size are found to be decreased. SEM images indicate that the pores are surrounded by a thick columnar network of silicon walls. The observed PL spectra at room temperature for all the current densities confirm the formation of PS structures with nanocrystalline features. PL studies reveal that there is a prominent visible emission peak at 606 nm. The obtained variation of intensity in PL emission may be used for intensity varied light emitting diode applications. These studies confirm that the PS is a versatile material with potential for optoelectronics application.


2000 ◽  
Vol 638 ◽  
Author(s):  
Carlos Navarro ◽  
Luis F. Fonseca ◽  
Guillermo Nery ◽  
O. Resto ◽  
S. Z. Weisz

AbstractThe maximum photoresponse of a normal silicon photodetector, that uses a p-n junction as the active zone, is obtained when the incident radiation wavelength is around 750nm. This response diminishes significantly when the incident radiation is near or in the UV region. Meanwhile, nanocrystalline silicon (nc-Si) films with high transparency above 650nm and high absorbance in the UV can be prepared. By quantum confinement effects, a fraction of this absorbed UV energy is re-emitted as visible photons that can be used by the junction. We study the enhancement of the UV-photoresponse of two silicon detector prototypes with a silicon p-n junction active zone and with a photoluminescent nc-Si overlayer. One prototype is made with a porous silicon/n-type silicon/p-type silicon/p++-silicon/metal configuration and the other with an Eu-doped Si-SiO2 overlayer instead of the porous silicon one. The comparison between both prototypes and the control is presented and discussed stressing on the enhancement effect introduced by the photoluminescent overlayers, stability and reproducibility.


Author(s):  
Shereen M. Faraj ◽  
Shaimaa M. Abd Al-Baqi ◽  
Nasreen R. Jber ◽  
Johnny Fisher

Porous silicon (PS) has become the focus of attention in upgrading silicon for optoelectronics. In this work, various structures were produced depending on the formation parameters by photo-electrochemical etching (PECE) process of n- and p-type silicon wafer at different time durations (5–90 mins) and different current densities (5, 15, and 20 mA/cm2) for each set of time durations. Diode lasers of 405 nm, 473 nm, and 532 nm wavelengths, each 50 mW power, were used to illuminate the surface of the samples during the etching process. The results showed that controlled porous layers were achieved by using blue laser, giving uniform structure which can make it possible to dispense with expensive methods of patterning the silicon.


1996 ◽  
Vol 452 ◽  
Author(s):  
J. Von Behren ◽  
P. M. Fauchet ◽  
E. H. Chimowitz ◽  
C. T. Lira

AbstractHighly luminescent free-standing porous silicon thin films of excellent optical quality have been manufactured by using electrochemical etching and lift-off steps combined with supercritical drying. One to 50 μm thick free-standing layers made from highly (p+) and moderately (p) Boron doped single crystal silicon (c-Si) substrates have been produced with porosities (P) up to 95 %. The Fabry-Pérot fringes observed in the transmission and photoluminescence (PL) spectra are used to determine the refractive index. At the highest P the index of refraction is below 1.2 from the IR to 2 eV. The absorption coefficients follow a nearly exponential behavior in the energy range from 1.2 eV and 4 eV. The porosity corrected absorption spectra of free-standing films made from p type c-Si substrates are blue shifted with respect to those prepared from p+ substrates. For P > 70 % a blue shift is also observed in PL. At equal porosities the luminescence intensities of porous silicon films made from p+ and p type c-Si are different by one order of magnitude.


2012 ◽  
Vol 576 ◽  
pp. 519-522 ◽  
Author(s):  
Fadzilah Suhaimi Husairi ◽  
Maslihan Ain Zubaidah ◽  
Shamsul Faez M. Yusop ◽  
Rusop Mahmood Mohamad ◽  
Saifolah Abdullah

This article reports on the electrical properties of porous silicon nanostructures (PSiNs) in term of its surface topography. In this study, the PsiNs samples were prepared by using different current density during the electrochemical etching of p-type silicon wafer. PSiNs has been investigated its electrical properties and resistances for different surface topography of PSiNs via current-voltage (I-V) measurement system (Keithley 2400) while its physical structural properties was investigated by using atomic force microscopy (AFM-XE100).


Author(s):  
V. N. MIRONOV ◽  
◽  
O. G. PENYAZKOV ◽  
P. N. KRIVOSHEYEV ◽  
Y. A. BARANYSHYN ◽  
...  

The ability of porous silicon to actively participate in oxidative reactions leading to combustion and explosion when interacting with reagents in the pores was established about twenty years ago [1] but because of the high propagation velocities of these physicochemical transformations (102-103 m/s), it was di©cult to understand their mechanisms.


Sign in / Sign up

Export Citation Format

Share Document