scholarly journals Comparative geochemical characteristics and genesis of large polystage plutons in the core and periphery of the different age areas of the Mongol-Okhotsk fold belt

2019 ◽  
Vol 487 (4) ◽  
pp. 418-423
Author(s):  
V. S. Antipin ◽  
M. I. Kuzmin ◽  
D. Odgerel ◽  
L. V. Kousch ◽  
N. V. Sheptyakova

The Early Mesozoic Baga-Khentey pluton is the fragment of the Dauria-Khentey batholith, which could have formed due by the mantle plume action on lower horizons of the continental crust within the zone of collisional compression by closing of the Mongol-Okhotsk ocean. The batholith and their peripheral zones possibly formed from the mantle and crustal sources of magma. The Ikh-Narotin-Khid Massif is located on the border of the rifting zones on periphery of the Late Mesozoic area. The petrographic and geochemical affinity of granitoids of the Ikh-Narotin-Khid massif and composition of gneisses from the country rocks might indicate that this was the substratum in formation of palingenic granites of the calc-alkali series. The distinctions in rock composition of the large plutons consist in minor differentiation of the Baga-Khentey Massif rocks probably related to the anatexis conditions and origin of melts in the collisional compression setting. The granites of the Ikh-Narotin-Khid Massif formed in the extension setting favorable for deep differentiation of magmatic melts.

Author(s):  
Lars Stemmerik ◽  
Finn Dalhoff ◽  
Birgitte D. Larsen ◽  
Jens Lyck ◽  
Anders Mathiesen ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dalhoff, F., Larsen, B. D., Lyck, J., Mathiesen, A., & Nilsson, I. (1998). Wandel Sea Basin, eastern North Greenland. Geology of Greenland Survey Bulletin, 180, 55-62. https://doi.org/10.34194/ggub.v180.5086 _______________ The Wandel Sea Basin in eastern North Greenland is the northernmost of a series of fault-bounded Late Palaeozoic – Early Tertiary basins exposed along the eastern and northern margin of Greenland (Fig. 1). The basin and the surrounding shelf areas are located in a geologically complex region at the junction between the N–S trending Caledonian fold belt in East Greenland and the E–W trending Ellesmerian fold belt in North Greenland, and along the zone of later, Tertiary, continental break-up. The Wandel Sea Basin started to develop during the Carboniferous as a result of extension and rifting between Greenland and Norway, and Greenland and Spitsbergen (Håkansson & Stemmerik 1989), and was an area of accumulation during the Early Carboniferous – Early Tertiary period. Two main epochs of basin evolution have been recognised during previous studies of the basin fill: an early (late Palaeozoic – early Triassic) epoch characterised by a fairly simple system of grabens and half-grabens, and a late (Mesozoic) epoch dominated by strike-slip movements (Håkansson & Stemmerik 1989). The Mesozoic epoch only influenced the northern part of the basin, north of the Trolle Land fault zone (Fig. 1). Thus the northern and southern parts of the basin have very different structural and depositional histories, and accordingly different thermal histories and hydrocarbon potential. This paper summarises the results of a project supported by Energy Research Program (EFP-94), the purpose of which was to model the Wandel Sea Basin with special emphasis on hydrocarbon potential and late uplift history, and to provide biostratigraphic and sedimentological data that could improve correlation with Svalbard and the Barents Sea. It is mainly based on material collected during field work in Holm Land and Amdrup Land in the south-eastern part of the Wandel Sea Basin during 1993–1995 with additional data from eastern Peary Land (Stemmerik et al. 1996). Petroleum related field studies have concentrated on detailed sedimentological and biostratigraphic studies of the Carboniferous–Permian Sortebakker, Kap Jungersen, Foldedal and Kim Fjelde Formations in Holm Land and Amdrup Land (Fig. 2; Døssing 1995; Stemmerik 1996; Stemmerik et al. 1997). They were supplemented by a structural study of northern Amdrup Land in order to improve the understanding of the eastward extension of the Trolle Land fault system and possibly predict its influence in the shelf areas (Stemmerik et al. 1995a; Larsen 1996). Furthermore, samples for thermal maturity analysis and biostratigraphy were collected from the Mesozoic of Kap Rigsdagen and the Tertiary of Prinsesse Thyra Ø (Fig. 1).


2019 ◽  
Vol 484 (5) ◽  
pp. 584-588
Author(s):  
A. I. Kiselev ◽  
V. V. Yarmolyuk

The Kobyuminsky system of grabens was formed in the Early Jurassic within the Verkhoyansk passive margin of the Siberian platform. The volcanic complex of grabens is represented by basalts with elevated TiO2 contents (> 1.8 wt%). According to geochemical characteristics, the rocks of the volcanic series occupy an intermediate position between the basalts of the oceanic islands (OIB) and the basalt-rich mid-oceanic ridges (E-MORB). The data obtained led to the conclusion that the Kobuminsky system of grabens within the passive margin of the Siberian continent arose in connection with the activity of a small mantle plume.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
YaYun Liang ◽  
Wenhui Guo ◽  
Yao Ma ◽  
Enquan Zhao

Abstract The eastern North China Craton (NCC) has been recognised as undergoing cratonic destruction during the Mesozoic; however, the mechanism of its destruction is still unclear. The main difference between the proposed models is whether the lower continental crust (LCC) underwent thinning. In this study, we conducted comprehensive analyses of Late Mesozoic felsic intrusive rocks, including Late Jurassic granites (166–146 Ma), Early Cretaceous granodiorites (136–123 Ma), and latest Early Cretaceous granites (123–108 Ma) from the Jiaodong Peninsula, located on the southeastern margin of the NCC. These rocks allowed us to investigate variations in the LCC thickness in this region and to further discuss the destruction mechanism of the eastern NCC. Here, temporal variations in crustal thickness can be tracked using whole-rock La/Yb ratios of the felsic intrusive rocks. Our study shows that the continental crust in the eastern NCC thickened during the Late Jurassic (>40 km) due to compression and the westward subduction of the Palaeo-Pacific Ocean lithosphere beneath the NCC since the Early Jurassic. The continental crust further thickened during the Early Cretaceous, caused by the steepening of the subducting slab after ~144 Ma that produced crustal underplating of mantle-derived melts in an extensional setting. However, the continental crust thinned (20–40 km) during the latest Early Cretaceous, caused by the rollback of the subducting slab after ~123 Ma. The geochemical compositions of three stages of felsic intrusions also suggest that the regional tectonic stress that affects the eastern NCC altered from a compressional to an intraplate extensional environment after ~144 Ma. Thus, the Late Mesozoic destruction of the eastern NCC and its accompanying magmatism were controlled by prolonged thermomechanical-chemical erosion due to low-angle subduction, steepening, and rollback of the Palaeo-Pacific Oceanic lithosphere.


1979 ◽  
Vol 16 (6) ◽  
pp. 1166-1175 ◽  
Author(s):  
Jo Anne Nelson

The western margin of the Coast Plutonic Complex, one of the major tectonic boundaries of the Canadian Cordillera, has been variously interpreted as an intrusive contact, a shear zone, and a suture zone joining the Early Mesozoic Insular Belt to the North American continent. A representative section of this boundary, exposed on islands in Johnstone Strait, is an intrusive contact along which a quartz diorite with peripheral mafic phases truncates Early Mesozoic sediments and volcanics of the Insular Belt. Concordant hornblende–biotite pairs and two whole rock biotite isochrons date the intrusion as Late Jurassic (151 Ma). Prior to intrusion the stratified units underwent prehnite–pumpellyite facies metamorphism and west-northwest block faulting.The contact aureole of the quartz diorite and its associated mafic phases involves greenschist and hornblende–hornfels facies assemblages. Total pressure in the upper Karmutsen Formation during contact metamorphism was less than 2.5 × 105 kPa. The maximum contact temperature was between 670 and 700 °C. Forcible emplacement of the intrusion caused penetrative deformation of wall rocks in the inner aureole. The maximum contact temperatures indicate that the plutonic bodies were at near-liquidus temperatures when emplaced.The contact on Hardwicke and West Thurlow Islands appears representative of most of the tectonic boundary between the southern Coast Plutonic Complex and the Insular Belt. The western margin of the Coast Plutonic Complex is thus a Late Mesozoic magmatic front, the western limit of the intense magmatism that generated the Coast Plutonic Complex. The formation of Georgia Depression over the province boundary was a later event, coeval with major uplift of the Coast Plutonic Complex.


1998 ◽  
Vol 62 (2) ◽  
pp. 213-224 ◽  
Author(s):  
J. R. Ashworth ◽  
V. V. Reverdatto ◽  
V. YU. kolobov ◽  
V. V. Lepetyukha ◽  
V. S. Sheplev ◽  
...  

AbstrsctIn a granulite from the Kokchetav massif, a complex mineral assemblage and intricate textures have resulted from a combination of unusual rock composition and two–stage metamorphic history. The second, contact metamorphism produced mainly cordierite and anthophyllite, reflecting a bulk composition attributed to pre–metamorphic alteration of basic igneous rock. From the first, highpressure metamorphism, garnet relics persist while another mineral has been completely pseudomorphed. The garnet is partly replaced by a symplectite of three minerals: orthopyroxene vermicules in a coarser intergrowth of cordierite and calcic plagioclase. Despite variable proportions of cordierite and plagioclase, the Al:Si ratio of the symplectite is almost constant, because the proportion of orthopyroxene is smaller where the dominant aluminous mineral is cordierite (Al:Si ≈ 0.8) than where the even more aluminous plagioclase (Al:Si ≈ 0.89) is prominent. The bulk Al:Si ratio of this symplectite, approximately 0.69, is very close to that of reactant garnet (0.66), indicating that Al and Si have been retained almost completely during the local reaction, while other elements were more mobile. In the pseudomorphs, aluminous cores (with Al:Si ratios 1.61–1.93) indicate that the mineral which has been completely replaced was probably kyanite. These cores comprise plagioclase, zoisite, corundum and spinel, and are surrounded by layers of plagioclase and cordierite. Fe, Mg, and Ca have diffused to the core, through layers with low bulk concentrations of these elements, probably by grainboundary diffusion in the solid state.


1979 ◽  
Vol 116 (3) ◽  
pp. 167-179 ◽  
Author(s):  
P. W. G. Tanner ◽  
D. C. Rex

Summary19 new K–Ar mineral ages of 78-201 Ma and 3 Rb–Sr whole rock isochron ages of 81 ± 10, 127±4 and 181±30 Ma are presented from units of continental crust, mafic complex and island arc assemblage on South Georgia. The Drygalski Fjord Complex, part of the possible floor of the marginal basin in the southern part of the island, includes granodiorite and gabbro plutons of minimum age 180–200 Ma. Together with older metasediments they have been affected by a major thermal event at about 140 Ma, thought to have resulted from the emplacement of a mafic complex (Larsen Harbour Formation) during the initial opening of the marginal basin. Rocks of the Larsen Harbour Formation are cut by the Smaaland Cove intrusion dated by Rb–Sr whole rock isochron at 127±4 Ma. An island arc assemblage exposed to the SW of South Georgia consists of pyroclastic rocks cut by monzodiorite and andesite intrusions, which give radiometric ages of 81–103 Ma. These data suggest that the marginal basin opened during the late Jurassic (pre-140 Ma); that part of an earlier (early Mesozoic) magmatic arc is preserved in continental crust making up part of the floor of the basin; and that subduction continued beneath the island arc until at least the Senonian time. The younger plutons in the arc were emplaced at roughly the same time as turbidite facies rocks at deep levels in the marginal basin were being affected by penetrative deformation and metamorphism. The timing of events on South Georgia agrees closely with that deduced for the continuation of the same island arc–marginal basin system in South America. The 180–200 Ma plutons correlate with an older suite of plutonic rocks reported from the Antarctic Peninsula and southern Andes; they are part of a once-continuous magmatic arc related to subduction of the Pacific plate beneath Gondwanaland during the early Mesozoic.


Sign in / Sign up

Export Citation Format

Share Document