scholarly journals Numerical simulations of the ice flow dynamics of George VI Ice Shelf, Antarctica

2007 ◽  
Vol 53 (183) ◽  
pp. 659-664 ◽  
Author(s):  
Angelika Humbert

A diagnostic, dynamic/thermodynamic ice-shelf model is applied to the George VI Ice Shelf, situated in the Bellinghausen Sea, Antarctica. The George VI Ice Shelf has a peculiar flow geometry which sets it apart from other ice shelves. Inflow occurs along the two longest, and almost parallel, sides, whereas outflow occurs on the two ice fronts that are relatively short and situated at opposite ends of the ice shelf. Two data sources were used to derive the ice thickness distribution: conventional radioecho sounding from the British Antarctic Survey was combined with thickness inferred from surface elevation obtained by the NASA GLAS satellite system assuming hydrostatic equilibrium. We simulate the present ice flow over the ice shelf that results from the ice thickness distribution, the inflow at the grounding line and the flow rate factor. The high spatial resolution of the ice thickness distribution leads to very detailed simulations. The flow field has some extraordinary elements (e.g. the stagnation point characteristics resulting from the unusual ice-shelf geometry).

2015 ◽  
Vol 785 ◽  
pp. 109-134 ◽  
Author(s):  
M. C. Dallaston ◽  
I. J. Hewitt ◽  
A. J. Wells

We study a simplified model of ice–ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.


2015 ◽  
Vol 61 (230) ◽  
pp. 1194-1206 ◽  
Author(s):  
Martin G. Wearing ◽  
Richard C.A. Hindmarsh ◽  
M. Grae Worster

AbstractWe investigate the relationship between four ice-shelf characteristics in the area close to the calving front: ice flow speed, strain rate, ice thickness and shelf width. Data are compiled for these glaciological parameters at the calving fronts of 22 Antarctic ice shelves. Clarification concerning the viscous supply of ice to the calving front is sought following the empirical calving law of Alley and others (2008), derived from a similar but smaller dataset, and the scaling analysis of Hindmarsh (2012). The dataset is analysed and good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of ice shelves that are laterally confined and have uniform rheology. The lateral confinement ensures flow is aligned in the along-shelf direction, and uniform rheological parameters mean resistance to flow is provided by near-stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute to marginal weakening or the presence of ice tongues.


2009 ◽  
Vol 55 (189) ◽  
pp. 53-65 ◽  
Author(s):  
Angelika Humbert ◽  
Thomas Kleiner ◽  
Chris-Oliver Mohrholz ◽  
Christoph Oelke ◽  
Ralf Greve ◽  
...  

AbstractTwo diagnostic, dynamic/thermodynamic ice-shelf models are applied to the Brunt Ice Shelf/Stancomb-Wills Ice Tongue system, located off Caird Coast, Coats Land, Antarctica. The Brunt Ice Shelf/Stancomb-Wills Ice Tongue system is characterized as a thin, unbounded ice shelf with an atypical and highly heterogeneous structure. In contrast to other ice shelves, a composite mass of icebergs that calved at the grounding line and were then locked within fast (sea) ice exists between the fast-moving Stancomb-Wills Ice Stream and the slow-moving Brunt Ice Shelf. We simulate the present flow regime of the ice shelf that results from the ice-thickness distribution and the inflow at the grounding line with two different models, and compare the model results with feature tracking and InSAR flow velocities. We then incorporate two observed features, a rift and a shear margin, into the models with two different approaches, and demonstrate the effects of variations in numerical values for the shear strength and viscosity in these zones on the simulated velocity field. A major result is that both kinds of implementation of the rifts lead to similar effects on the entire velocity field, while there are discrepancies in the vicinity of the rifts.


2021 ◽  
Author(s):  
Jim Jordan ◽  
HIlmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamiesson ◽  
...  

<div>The buttressing strength of Antarctic ice shelves directly effects the amount of ice discharge across the grounding line, with buttressing strength affected by both the thickness and extent of an ice shelf. Recent work has shown that a reduction in ice-shelf buttressing due to ocean induced ice-shelf thinning is responsible for a significant portion of increased Antarctic ice discharge (Gudmundsson et al., 2019, but few studies have attempted to show the effect of variability in ice-shelf extent on ice discharge. This variability arises due to ice-shelf calving following a cycle of long periods of slow, continuous calving interposed with calving of large, discrete sections.  These discrete calving events tend to occur on a comparative timeframe to that of the observational record. As such, when determining observed changes in ice discharge it is crucial that this natural variability is separated from any observed trends.  </div><div> </div><div>In this work we use the numerical ice-flow model Úa in combination with observations of ice shelf extent to diagnostically calculate Antarctic ice discharge. These observations primarily date back to the 1970s, though for some ice shelves records exist back to the 1940s. We assemble an Antarctic wide model for two scenarios: 1) with ice shelves at their maximum observed extent and 2) with ice shelves at their minimum observed extent. We then compare these two scenarios to differences in the observed changes in Antarctic ice-discharge to determine how much can be attributed to natural variance .</div><p> </p><p><span>Gudmundsson, G. H.</span><span>, Paolo, F. S., Adusumilli, S., & Fricker, H. A. (2019). </span>Instantaneous Antarctic ice‐ sheet mass loss driven by thinning ice shelves. <em>Geophysical Research Letters</em>, 46, 13903– 13909. </p>


2013 ◽  
Vol 54 (63) ◽  
pp. 18-24 ◽  
Author(s):  
Daniel Farinotti ◽  
Hugh Corr ◽  
G.Hilmar Gudmundsson

AbstractAn interpolated bedrock topography is presented for Flask Glacier, one of the tributaries of the remnant part of the Larsen B ice shelf, Antarctic Peninsula. The ice thickness distribution is derived by combining direct but sparse measurements from airborne radio-echo soundings with indirect estimates obtained from ice-flow modelling. The ice-flow model is applied to a series of transverse profiles, and a first estimate of the bedrock is iteratively adjusted until agreement between modelled and measured surface velocities is achieved. The adjusted bedrock is then used to reinterpret the radio-echo soundings, and the recovered information used to further improve the estimate of the bedrock itself. The ice flux along the glacier center line provides an additional and independent constraint on the ice thickness. The resulting bedrock topography reveals a glacier bed situated mainly below sea level with sections having retrograde slope. The total ice volume of 120 ±15 km3 for the considered area of 215 km2 corresponds to an average ice thickness of 560 ± 70 m.


2021 ◽  
Author(s):  
Reinhard Drews ◽  
Christian Wild ◽  
Oliver Marsh ◽  
Wolfgang Rack ◽  
Todd Ehlers ◽  
...  

<p>Dynamics of polar outlet glaciers vary with ocean tides, providing a natural laboratory to understand basal processes beneath ice streams, ice rheology and ice-shelf buttressing. We apply Terrestrial Radar Interferometry to close the spatiotemporal gap between localized, temporally well-resolved GNSS and area-wide but sparse satellite observations. Three-hour flowfields collected over an eight day period at Priestley Glacier, Antarctica, validate and provide the spatial context for concurrent GNSS measurements. Ice flow is fastest during falling tides and slowest during rising tides. Principal components of the timeseries prove upstream propagation of tidal signatures $>$ 10 km away from the grounding line. Hourly, cm-scale horizontal and vertical flexure patterns occur $>$6 km upstream of the grounding line. Vertical uplift upstream of the grounding line is consistent with ephemeral re-grounding during low-tide impacting grounding-zone stability. On the freely floating ice shelves, we find velocity peaks both during high- and low-tide suggesting that ice-shelf buttressing varies temporally as a function of flexural bending from tidal displacement. Taken together, these observations identify tidal imprints on ice-stream dynamics on new temporal and spatial scales providing constraints for models designed to isolate dominating processes in ice-stream and ice-shelf mechanics.</p>


1988 ◽  
Vol 11 ◽  
pp. 222
Author(s):  
A. M. Smith

New tiltmeter data from Doake Ice Rumples on Ronne Ice Shelf are presented. The tiltmeters detected flexing of the ice shelf close to the grounding line, due to tidal forces. In earlier studies on Rutford Ice Stream, flow was from grounded ice into the floating ice shelf. In contrast, the area studied on Ronne Ice Shelf exhibits flow from the ice shelf on to grounded ice rumples. The data span 5 km of the up-stream ice shelf and much of the grounded ice. Approximately 30 d of continuous tilt data are available for one site on the ice shelf. Analysis of this record can determine the dominant tidal frequencies present. A number of shorter records cover periods normally of a few days. These were obtained from sites both up-stream and down-stream of the long-term site. They have been used to investigate the variation in tilt amplitude with distance from the grounding line. The approximate position of the grounding line was located from the position of strand cracks and by using surface-elevation and ice-thickness data. The tiltmeters helped to confirm this position. Over grounded ice, tidal flexing is clearly present up to about 2 km from the grounding line. Beyond this it appears to be absent. The signal recorded by tiltmeters on grounded ice farther than 2 km from the grounding line is attributed, at present, to a temperature dependency of the tiltmeters. The flexing of ice shelves at tidal frequencies has previously been treated as an elastic problem. Available models which use beam theory require the use of a time-dependent function and a reduced “effective” ice thickness in the elastic modulus. On preliminary analysis, data from the ice shelf and grounding line of Doake Ice Rumples appear to be consistent with these theories. More detailed analysis and interpretation is required in order to confirm the level of agreement and to determine possible variations due to the “reversed” nature of the flow direction.


2020 ◽  
Author(s):  
Tong Zhang ◽  
Stephen F. Price ◽  
Matthew J. Hoffman ◽  
Mauro Perego ◽  
Xylar Asay-Davis

Abstract. We seek to understand causal connections between changes in sub-ice shelf melting, ice shelf buttressing, and grounding-line flux. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding line flux due to localized ice thickness perturbations – a proxy for changes in sub-ice shelf melting – applied to idealized (MISMIP+) and realistic (Larsen C) domains. From our experiments, we identify a correlation between a locally derived buttressing number on the ice shelf, based on the first principal stress, and changes in the integrated grounding line flux. The origin of this correlation, however, remains elusive from a physical perspective; while local thickness perturbations on the ice shelf (thinning) generally correspond to local increases in buttressing, their integrated impact on changes at the grounding line are exactly the opposite (buttressing at the grounding line decreases and ice flux at the grounding line increases). This and additional complications encountered when examining realistic domains motivates us to seek an alternative approach, an adjoint-based method for calculating the sensitivity of the integrated grounding line flux to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for assessing grounding line flux sensitivity to changes in sub-ice shelf melting.


2020 ◽  
Vol 14 (10) ◽  
pp. 3407-3424
Author(s):  
Tong Zhang ◽  
Stephen F. Price ◽  
Matthew J. Hoffman ◽  
Mauro Perego ◽  
Xylar Asay-Davis

Abstract. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding-line flux due to localized ice thickness perturbations, a proxy for localized changes in sub-ice-shelf melting. From our experiments, applied to idealized (MISMIP+) and realistic (Larsen C) ice shelf domains, we identify a correlation between a locally derived buttressing number on the ice shelf, based on the first principal stress, and changes in the integrated grounding-line flux. The origin of this correlation, however, remains elusive from the perspective of a theoretical or physically based understanding. This and the fact that the correlation is generally much poorer when applied to realistic ice shelf domains motivate us to seek an alternative approach for predicting changes in grounding-line flux. We therefore propose an adjoint-based method for calculating the sensitivity of the integrated grounding-line flux to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for assessing grounding-line flux sensitivity to changes in sub-ice-shelf melting.


2020 ◽  
Author(s):  
Lielle Stern ◽  
Roiy Sayag

<p>Ice shelves that spread into the ocean can develop rifts, which can trigger ice-berg calving and enhance ocean-induced melting. Fluid mechanically, this system is analogues to the propagation of a non-Newtonian, strain-rate-softening fluid representing ice that displaces a relatively inviscid and denser fluid that represents an ocean. Recent scaled laboratory experiments have shown that when the flow geometry is circular the front of the displacing non-Newtonian fluid, which represents the leading edge of a shelf, can become unstable and evolve finger-like patterns comprised of rifts and tongues (Sayag & Worster, 2019a). As the rifts and tongues evolved, their number declined with time through the closure of some rifts.</p><p>In this study we focus on the weakly nonlinear stability of the propagating front. We consider an annular ice shelf having a fixed grounding line and an edge that evolves due to constant mass flux across the grounding line. We investigate the time evolution of the perturbed front to quantify the instability mechanism and the reduction of the number of rifts and tongues over time. The model predictions have better agreement with experimental measurements than previous studies. Our analysis elucidates the formation and evolution of rifts in ice shelves and provides testable predictions.</p>


Sign in / Sign up

Export Citation Format

Share Document