scholarly journals The impact of topographically forced stationary waves on local ice-sheet climate

2010 ◽  
Vol 56 (197) ◽  
pp. 534-544 ◽  
Author(s):  
Johan Liakka ◽  
Johan Nilsson

AbstractA linear two-level atmospheric model is employed to study the influence of ice-sheet topography on atmospheric stationary waves. In particular, the stationary-wave-induced temperature anomaly is considered locally over a single ice-sheet topography, which is computed using the plastic approximation. It is found that stationary waves induce a local cooling which increases linearly with the ice volume for ice sheets of horizontal extents smaller than ∼1400 km. Beyond this horizontal scale, the dependence of stationary-wave-induced cooling on the ice volume becomes gradually weaker. For a certain ice-sheet size, and for small changes of the surface zonal wind, it is further shown that the strength of the local stationary-wave-induced cooling is proportional to the basic state meridional temperature gradient multiplied by the vertical stratification in the atmosphere. These results are of importance for the nature of the feedback between ice sheets and stationary waves, and may also serve as a basis for parameterizing this feedback in ice-sheet model simulations (e.g. through the Pleistocene glacial/interglacial cycles).

2020 ◽  
Vol 33 (16) ◽  
pp. 6929-6944 ◽  
Author(s):  
Yu Gao ◽  
Zhengyu Liu ◽  
Zhengyao Lu

AbstractThe effect of ice sheet topography on the East Asian summer monsoon (EASM) during the Last Glacial Maximum is studied using CCSM3 in a hierarchy of model configurations. It is found that receding ice sheets result in a weakened EASM, with the reduced ice sheet thickness playing a major role. The lower ice sheet topography weakens the EASM through shifting the position of the midlatitude jet, and through altering Northern Hemisphere stationary waves. In the jet shifting mechanism, the lowering of ice sheets shifts the westerly jet northward and decreases the westerly jet over the subtropics in summer, which reduces the advection of dry enthalpy and in turn precipitation over the EASM region. In the stationary wave mechanism, the lowering of ice sheets induces an anomalous stationary wave train along the westerly waveguide that propagates into the EASM region, generating an equivalent-barotropic low response; this leads to reduced lower-tropospheric southerlies, which in turn reduces the dry enthalpy advection into East Asia, and hence the EASM precipitation.


2013 ◽  
Vol 9 (2) ◽  
pp. 2183-2216
Author(s):  
P. Beghin ◽  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
...  

Abstract. The development of large continental-scale ice sheets over Canada and Northern Europe during the last glacial cycle likely modified the track of stationary waves and influenced the location of growing ice sheets through changes in accumulation and temperature patterns. Although they are often mentioned in the literature, these feedback mechanisms are poorly constrained and have never been studied throughout an entire glacial-interglacial cycle. Using the climate model of intermediate complexity CLIMBER-2 coupled with the 3-D ice-sheet model GRISLI, we investigate the impact of stationary waves on the construction of past Northern Hemisphere ice sheets during the past glaciation. The stationary waves are not explicitly computed in the model but their effect on sea-level pressure is parameterized. Several parameterizations have been tested allowing to study separately the effect of surface temperature (thermal forcing) and topography (orographic forcing) on sea-level pressure, and therefore on atmospheric circulation and ice-sheet surface mass balance. We show that the response of ice sheets to thermal and/or orographic forcings is rather different. At the beginning of the glaciation, the orographic effect favors the growth of the Laurentide ice sheet, whereas Fennoscandia appears rather sensitive to the thermal effect. Using the ablation parameterization as a trigger to artificially modify the size of one ice sheet, the remote influence of one ice sheet on the other is also studied as a function of the stationary wave parameterizations. The sensitivity of remote ice sheets is shown to be highly sensitive to the choice of these parameterizations with a larger response when orographic effect is accounted for. Results presented in this study suggest that the various spatial distributions of ice sheets could be partly be explained by the feedbacks mechanisms occurring between ice sheets and atmospheric circulation.


2016 ◽  
Vol 12 (5) ◽  
pp. 1225-1241 ◽  
Author(s):  
Johan Liakka ◽  
Marcus Löfverström ◽  
Florence Colleoni

Abstract. Modeling studies have shown that the continental-scale ice sheets in North America and Eurasia in the last glacial cycle had a large influence on the atmospheric circulation and thus yielded a climate distinctly different from the present. However, to what extent the two ice sheets influenced each others' growth trajectories remains largely unexplored. In this study we investigate how an ice sheet in North America influences the downstream evolution of the Eurasian ice sheet, using a thermomechanical ice-sheet model forced by climate data from atmospheric snapshot experiments of three distinctly different phases of the last glacial cycle: the Marine Isotope Stages 5b, 4, and 2 (Last Glacial Maximum – LGM). Owing to the large uncertainty associated with glacial changes in the Atlantic meridional overturning circulation, each atmospheric snapshot experiment was conducted using two distinctly different ocean heat transport representations. Our results suggest that changes in the North American paleo-topography may have largely controlled the zonal distribution of the Eurasian ice sheet. In the MIS4 and LGM experiments, the Eurasian ice sheet migrates westward towards the Atlantic sector – largely consistent with geological data and contemporary ice-sheet reconstructions – due to a low wave number stationary wave response, which yields a cooling in Europe and a warming in northeastern Siberia. The expansion of the North American ice sheet between MIS4 and the LGM amplifies the Siberian warm anomaly, which limits the glaciation there and may therefore help explain the progressive westward migration of the Eurasian ice sheet in this time period. The ocean heat transport only has a small influence on the stationary wave response to the North American glacial topography; however, because temperature anomalies have a smaller influence on an ice sheet's ablation in a colder climate than in a warmer one, the impact of the North American glacial topography on the Eurasian ice-sheet evolution is reduced for colder surface conditions in the North Atlantic. While the Eurasian ice sheet in the MIS4 and the LGM experiments appears to be in equilibrium with the simulated climate conditions, the MIS5b climate forcing is too warm to grow an ice sheet in Eurasia. First-order sensitivity experiments suggest that the MIS5b ice sheet was established during preceding colder stages.


2019 ◽  
Vol 32 (13) ◽  
pp. 3917-3940 ◽  
Author(s):  
William H. G. Roberts ◽  
Camille Li ◽  
Paul J. Valdes

Abstract Stationary waves describe the persistent meanders in the west–east flow of the extratropical atmosphere. Here, changes in stationary waves caused by ice sheets over North America are examined and the underlying mechanisms are discussed. Three experiment sets are presented showing the stationary wave response to the albedo or topography of ice sheets, as well as the albedo and topography in combination, as the forcings evolve from 21 to 6 ka. It is found that although the wintertime stationary waves have the largest amplitude, changes due to an ice sheet are equally large in summer and winter. In summer, ice sheet albedo is the dominant cause of changes: topography alone gives an opposite response to realistic ice sheets including albedo and topography. In winter, over the Atlantic, stationary wave changes are due to the ice sheet topography; over the Pacific, they are due to the persistence of summertime changes, mediated by changes in the ocean circulation. It is found that the response of stationary waves over the last deglaciation echoes the above conclusions, with no evidence of abrupt shifts in atmospheric circulation. The response linearly weakens as the albedo and height decrease from 21 to 10 ka. As potential applications, the seasonal cycle over Greenland is shown to be sensitive primarily to changes in summer climate caused by the stationary waves; the annual mean circulation over the North Pacific is found to result from summertime, albedo-forced, stationary wave effects persisting throughout the year because of ocean dynamics.


2018 ◽  
Author(s):  
Zhongshi Zhang ◽  
Qing Yan ◽  
Elizabeth J. Farmer ◽  
Camille Li ◽  
Gilles Ramstein ◽  
...  

Abstract. It has been widely believed that Northeast (NE) Siberia remained ice-free during most Pleistocene Northern Hemisphere (NH) glaciations, while ice sheets extended gradually across North America and Northwest (NW) Eurasia. However, recent fieldwork has provided robust evidence of ice sheets occupying the shallow continental shelf of the East Siberian Sea during several Pleistocene glaciations. The debate surrounding the existence and history of this enigmatic NE Siberian ice sheet highlights fundamental gaps in our current understanding of the mechanisms of glacial climate evolution. Here, we combine climate and ice sheet simulations to demonstrate how ice-vegetation-atmosphere-ocean dynamics can lead to two ice sheet configurations: the well-known Laurentide-Eurasian configuration with large ice sheets over North America and NW Eurasia, and a circum-Arctic configuration with large ice sheets over NE Siberia and the Canadian Rockies. Compared to the Laurentide-Eurasian configuration, formation of the circum-Arctic configuration can occur with an atmospheric stationary wave pattern similar to today's. Once the circum-Arctic configuration is established, it amplifies atmospheric stationary waves, leading to surface warming in the North Pacific, ablation of the NE Siberian ice sheet, and ultimately a swing to the Laurentide-Eurasian configuration. Our simulations highlight the complexity of glacial climates, and may hint towards potential mechanisms for interglacial-glacial transitions.


1996 ◽  
Vol 42 (140) ◽  
pp. 10-22 ◽  
Author(s):  
Ian Joughin ◽  
Dale Winebrenner ◽  
Mark Fahnestock ◽  
Ron Kwok ◽  
William Krabill

AbstractDetailed digital elevation models (DEMs) do not exist for much of the Greenland and Antartic ice sheets. Radar altimetry is at present the primary, in many cases the only, source of topographic data over the ice sheets, but the horizontal resolution of such data is coarse. Satellite-radar interferometry uses the phase difference between pairs of synthetic aperture radar (SAR) images to measure both ice-sheet topography and surface displacement. We have applied this technique using ERS-1 SAR data to make detailed (i.e. 80 m horizontal resolution) maps of surface topography in a 100 km by 300 km strip in West Greenland, extending northward from just above Jakobshavns Isbræ. Comparison with а 76 km long line of airborne laser-altimeter data shows that We have achieved a relative accuracy of 2.5 m along the profile. These observations provide a detailed view of dynamically Supported topography near the margin of an ice sheet. In the final section We compare our estimate of topography with phase contours due to motion, and confirm our earlier analysis concerning vertical ice-sheet motion and complexity in ERS-1 SAR interferograms.


2018 ◽  
Vol 11 (6) ◽  
pp. 2299-2314 ◽  
Author(s):  
Rubén Banderas ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Marisa Montoya

Abstract. Offline forcing methods for ice-sheet models often make use of an index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from the Greenland ice-core temperature reconstruction, with present-day climatologies. An important drawback of this approach is that it clearly misrepresents climate variability at millennial timescales. The reason for this is that the spatial glacial–interglacial anomaly field used is associated with orbital climatic variations, while it is scaled following the characteristic time evolution of the index, which includes orbital and millennial-scale climate variability. The spatial patterns of orbital and millennial variability are clearly not the same, as indicated by a wealth of models and data. As a result, this method can be expected to lead to a misrepresentation of climate variability and thus of the past evolution of Northern Hemisphere (NH) ice sheets. Here we illustrate the problems derived from this approach and propose a new offline climate forcing method that attempts to better represent the characteristic pattern of millennial-scale climate variability by including an additional spatial anomaly field associated with this timescale. To this end, three different synthetic transient forcing climatologies are developed for the past 120 kyr following a perturbative approach and are applied to an ice-sheet model. The impact of the climatologies on the paleo-evolution of the NH ice sheets is evaluated. The first method follows the usual index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from ice-core data, with present-day climatologies. In the second approach the representation of millennial-scale climate variability is improved by incorporating a simulated stadial–interstadial anomaly field. The third is a refinement of the second one in which the amplitudes of both orbital and millennial-scale variations are tuned to provide perfect agreement with a recently published absolute temperature reconstruction over Greenland. The comparison of the three climate forcing methods highlights the tendency of the usual index approach to overestimate the temperature variability over North America and Eurasia at millennial timescales. This leads to a relatively high NH ice-volume variability on these timescales. Through enhanced ablation, this results in too low an ice volume throughout the last glacial period (LGP), below or at the lower end of the uncertainty range of estimations. Improving the representation of millennial-scale variability alone yields an important increase in ice volume in all NH ice sheets but especially in the Fennoscandian Ice Sheet (FIS). Optimizing the amplitude of the temperature anomalies to match the Greenland reconstruction results in a further increase in the simulated ice-sheet volume throughout the LGP. Our new method provides a more realistic representation of orbital and millennial-scale climate variability and improves the transient forcing of ice sheets during the LGP. Interestingly, our new approach underestimates ice-volume variations on millennial timescales as indicated by sea-level records. This suggests that either the origin of the latter is not the NH or that processes not represented in our study, notably variations in oceanic conditions, need to be invoked to explain millennial-scale ice-volume fluctuations. We finally provide here both our derived climate evolution of the LGP using the three methods as well as the resulting ice-sheet configurations. These could be of interest for future studies dealing with the atmospheric or/and oceanic consequences of transient ice-sheet evolution throughout the LGP and as a source of climate input to other ice-sheet models.


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


2021 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka ◽  
Takahito Mitsui ◽  
Fuyuki Saito

Abstract. Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial time-scale. Recent studies have shown that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally results in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials was shorter during the Marine Isotope Stage 3 (MIS3) compared with MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigated the role of glacial ice sheets. For this purpose, freshwater hosing experiments were conducted with an atmosphere–ocean general circulation model under MIS5a, MIS3 and MIS3 with MIS5a ice sheet conditions. The impact of ice sheet differences on the duration of the stadials was evaluated by comparing recovery times of the AMOC after freshwater forcing was reduced. Hosing experiments showed a slightly shorter recovery time of the AMOC in MIS3 compared with MIS5a, which was consistent with ice core data. We found that larger glacial ice sheets in MIS3 shortened the recovery time. Sensitivity experiments showed that stronger surface winds over the North Atlantic shortened the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which set favourable conditions for oceanic convection. In contrast, we also found that surface cooling by larger ice sheets tended to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet in MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, when the effect of surface wind played a larger role.


2012 ◽  
Vol 6 (6) ◽  
pp. 4897-4938 ◽  
Author(s):  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
C. Ritz

Abstract. Since the original formulation of the positive-degree-day (PDD) method, different PDD calibrations have been proposed in the literature in response to the increasing number of observations. Although these formulations provide a satisfactory description of the present-day Greenland geometry, they have not all been tested for paleo ice sheets. Using the climate-ice sheet model CLIMBER-GRISLI coupled with different PDD models, we evaluate how the parameterization of the ablation may affect the evolution of Northern Hemisphere ice sheets in the transient simulations of the last glacial cycle. Results from fully coupled simulations are compared to time-slice experiments carried out at different key periods of the last glacial period. We find large differences in the simulated ice sheets according to the chosen PDD model. These differences occur as soon as the onset of glaciation, therefore affecting the subsequent evolution of the ice system. To further investigate how the PDD method controls this evolution, special attention is given to the role of each PDD parameter. We show that glacial inception is critically dependent on the representation of the impact of the temperature variability from the daily to the inter-annual time scale, whose effect is modulated by the refreezing scheme. Finally, an additional set of sensitivity experiments has been carried out to assess the relative importance of melt processes with respect to initial ice sheet configuration in the construction and the evolution of past Northern Hemisphere ice sheets. Our analysis reveals that the impacts of the initial ice sheet condition may range from quite negligible to explaining about half of the LGM ice volume depending on the representation of stochastic temperature variations which remain the main driver of the evolution of the ice system.


Sign in / Sign up

Export Citation Format

Share Document